2009 Focused Update Incorporated Into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults

J. Am. Coll. Cardiol. published online Mar 26, 2009;

This information is current as of March 27, 2009

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://content.onlinejacc.org/cgi/content/full/j.jacc.2008.11.013v1

Downloaded from content.onlinejacc.org by on March 27, 2009
PRACTICE GUIDELINE: FULL TEXT

2009 Focused Update Incorporated Into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults

A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines

Developed in Collaboration With the International Society for Heart and Lung Transplantation

2005 Writing Committee Members

Sharon Ann Hunt, MD, FACC, FAHA, Chair
William T. Abraham, MD, FACC, FAHA
Marshall H. Chin, MD, MPH, FACP
Arthur M. Feldman, MD, PhD, FACC, FAHA
Gary S. Francis, MD, FACC, FAHA
Theodore G. Ganiats, MD
Mariell Jessup, MD, FACC, FAHA
Marvin A. Konstam, MD, FACC
Donna M. Mancini, MD
Keith Michl, MD, FACP
John A. Oates, MD, FAHA
Peter S. Rahko, MD, FACC, FAHA
Marc A. Silver, MD, FACC, FAHA
Lynne Warner Stevenson, MD, FACC, FAHA
Clyde W. Yancy, MD, FACC, FAHA

2009 Focused Update Writing Group Members

Mariell Jessup, MD, FACC, FAHA, Chair
William T. Abraham, MD, FACC, FAHA
Donald E. Casey, MD, MPH, MBA
Arthur M. Feldman, MD, PhD, FACC, FAHA
Gary S. Francis, MD, FACC, FAHA
Theodore G. Ganiats, MD
Marvin A. Konstam, MD, FACC
Donna M. Mancini, MD
Peter S. Rahko, MD, FACC, FAHA
Marc A. Silver, MD, FACC, FAHA
Lynne Warner Stevenson, MD, FACC, FAHA
Clyde W. Yancy, MD, FACC, FAHA

*International Society for Heart and Lung Transplantation Representative; †American College of Cardiology Foundation/American Heart Association Representative; ‡American College of Physicians Representative; §Heart Failure Society of America Representative; ¶American Academy of Family Physicians Representative; ‖American College of Cardiology Foundation/American Heart Association Performance Measures Liaison; #Content Expert; **American College of Chest Physicians Representative; ††American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Liaison

This document was approved by the American College of Cardiology Foundation Board of Trustees and the American Heart Association Science Advisory and Coordinating Committee in October 2008.

This article has been copublished electronically by Circulation. Copies: This document is available on the World Wide Web sites of the American College of Cardiology (www.acc.org) and American Heart Association (my.americanheart.org). For copies of this document, please contact Elsevier Inc. Reprint Department, fax (212) 633-3820, e-mail reprints@elsevier.com.

Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American College of Cardiology Foundation. Please contact Elsevier's permission department at healthpermissions@elsevier.com.

Downloaded from content.onlinejacc.org by on March 27, 2009
TABLE OF CONTENTS

Preamble (UPDATED) ... XXXX

1. Introduction (UPDATED) .. XX
 1.1. Evidence Review (UPDATED) XXXX
 1.2. Organization of Committee and Relationships With Industry (UPDATED) XXXX
 1.3. Review and Approval (NEW) XXXX
 1.3.1. Review and Approval (NEW) XXXX
1.4. Stages of Heart Failure (UPDATED) XXXX

2. Characterization of Heart Failure as a Clinical Syndrome ..XXXX
 2.1. Definition of Heart Failure XXXX
 2.2. Heart Failure as a Symptomatic Disorder XXXX
 2.3. Heart Failure as a Progressive Disorder XXXX

3. Initial and Serial Clinical Assessment of Patients Presenting With Heart Failure (UPDATED) XXXX
 3.1. Initial Evaluation of Patients XXXX
 3.1.1. Identification of Patients (UPDATED) XXXX
 3.1.2. Identification of a Structural and Functional Abnormality (UPDATED) XXXX
 3.1.3. Evaluation of the Cause of Heart Failure XXXX
 3.1.3.1. HISTORY AND PHYSICAL EXAMINATION XXXX
 3.1.3.2. LABORATORY TESTING (UPDATED) XXXX
 3.1.3.3. EVALUATION OF THE POSSIBILITY OF CORONARY ARTERY DISEASE XXXX
 3.1.3.4. EVALUATION OF THE POSSIBILITY OF MYOCARDIAL DISEASE XXXX
 3.2. Ongoing Evaluation of Patients XXXX
 3.2.1. Assessment of Functional Capacity XXXX
 3.2.2. Assessment of Volume Status XXXX
 3.2.3. Laboratory Assessment (UPDATED) XXXX
 3.2.4. Assessment of Prognosis (UPDATED) XXXX

4. Therapy .. XXXX
 4.1. Patients at High Risk for Developing Heart Failure (Stage A) ... XXXX
 4.1.1. Control of Risk ... XXXX
 4.1.1.1. TREATMENT OF HYPERTENSION XXXX

4.1.1.2. TREATMENT OF DIABETES XXXX
4.1.1.3. MANAGEMENT OF THE METABOLIC SYNDROME XXXX
4.1.1.4. MANAGEMENT OF ATEROSCLEROTIC DISEASE XXXX
4.1.1.5. CONTROL OF CONDITIONS THAT MAY CAUSE CARDIAC INJURY .. XXXX
4.1.1.6. OTHER MEASURES ... XXXX

4.1.2. Early Detection of Structural Abnormalities XXXX

4.2. Patients With Cardiac Structural Abnormalities or Remodeling Who Have Not Developed Heart Failure Symptoms (Stage B) .. XXXX
 4.2.1. Prevention of Cardiovascular Events XXXX
 4.2.1.1. PATIENTS WITH AN ACUTE MYOCARDIAL INFARCTION .. XXXX
 4.2.1.2. PATIENTS WITH A HISTORY OF MI BUT NORMAL LEFT VENTRICULAR EJECTION FRACTION XXXX
 4.2.1.3. PATIENTS WITH HYPERTENSION AND LEFT VENTRICULAR HYPERTROPHY XXXX
 4.2.1.4. PATIENTS WITH CHRONIC REDUCTION OF LEFT VENTRICULAR EJECTION FRACTION BUT NO SYMPTOMS XXXX
 4.2.1.5. PATIENTS WITH SEVERE VALVULAR DISEASE BUT NO SYMPTOMS XXXX
 4.2.1.5. PATIENTS WITH SEVERE VALVULAR DISEASE BUT NO SYMPTOMS XXXX

4.2.2. Early Detection of Heart Failure XXXX

4.3. Patients With Current or Prior Symptoms of HF (Stage C) .. XXXX
 4.3.1. Patients With Reduced Left Ventricular Ejection Fraction (UPDATED) XXXX
 4.3.1.1. GENERAL MEASURES (UPDATED) XXXX
 4.3.1.2. DRUGS RECOMMENDED FOR ROUTINE USE XXXX
 4.3.1.2.1. DIURETICS ... XXXX
 4.3.1.2.2. ANGIOTENSIN CONVERTING ENZYME INHIBITORS OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM .. XXXX
 4.3.1.2.3. INHIBITORS OF THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM .. XXXX
 4.3.1.2.4. DIGITALIS ... XXXX
 4.3.1.2.5. VENTRICULAR ARRHYTHMIAS AND PREVENTION OF SUDDEN DEATH (UPDATED) XXXX
 4.3.1.3. INTERVENTIONS TO BE CONSIDERED FOR USE IN SELECTED PATIENTS XXXX
 4.3.1.3.1. ISOOSORBIDE DINITRATE XXXX
 4.3.1.3.2. HYDRAZINE ... XXXX
 4.3.1.3.3. HYDRAZINE AND ISOOSORBIDE DINITRATE (UPDATED) .. XXXX
 4.3.1.3.4. CARDIAC RESYNCHRONIZATION THERAPY (UPDATED) .. XXXX
 4.3.1.3.5. EXERCISE TRAINING XXXX

Downloaded from content.onlinejacc.org by on March 27, 2009
Preamble (UPDATED)

It is important that the medical profession play a significant role in critically evaluating the use of diagnostic procedures and therapies as they are introduced and tested in the detection, management, or prevention of disease states. Rigorous and expert analysis of the available data documenting relative benefits and risks of those procedures and therapies can produce helpful guidelines that improve the effectiveness of care, optimize patient outcomes, and favorably affect the overall cost of care by focusing resources on the most effective strategies.

The American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA) have jointly engaged in the production of such guidelines in the area of cardiovascular disease since 1980. This effort is directed by the ACCF/AHA Task Force on Practice Guidelines, whose charge is to develop and revise practice guidelines for important cardiovascular diseases and procedures. Experts in the subject under consideration are selected from both organizations and charged with examining subject-specific data and writing or updating these guidelines. The process includes additional representatives from other medical practitioner and specialty groups where appropriate. Writing groups are specifically charged to perform a formal literature review, weigh the strength of evidence for or against a particular treatment or procedure, and include estimates of expected health outcomes where data exist. Patient-specific modifiers, comorbidities, and issues of patient preference that might influence the choice of particular tests or therapies are considered, as are frequency of follow-up and cost-effectiveness. When available, information from studies on cost will be considered; however, review of data on efficacy and clinical outcomes will constitute the primary basis for preparing recommendations in these guidelines.

The ACCF/AHA Task Force on Practice Guidelines makes every effort to avoid any actual, potential, or perce-
ceived conflicts of interest that might arise as a result of an outside relationship or personal interest of a member of the writing committee. Specifically, all members of the writing committee, as well as peer reviewers of the document, are asked to provide disclosure statements of all such relationships that might be perceived as real or potential conflicts of interest. Writing committee members are also strongly encouraged to declare a previous relationship with industry that may be perceived as relevant to guideline development. If a writing committee member develops a new relationship during his or her tenure, he or she is required to notify the guideline writing staff in writing. The continued participation of the writing committee member will be reviewed by the parent task force, reported orally to all members of the writing panel at each meeting, and updated and reviewed by the writing committee as changes occur. Please refer to the methodology manual for the ACCF/AHA guideline writing committees for further description and the relationships with industry policy (1). See Appendix 1 for a list of writing committee member relationships with industry and Appendix 2 for a listing of peer reviewer relationships with industry that are pertinent to this guideline.

The practice guidelines produced are intended to assist healthcare providers in clinical decision making by describing a range of generally acceptable approaches for the diagnosis, management, or prevention of specific diseases or conditions. These guidelines attempt to define practices that meet the needs of most patients in most circumstances. These guideline recommendations reflect a consensus of expert opinion after a thorough review of the available, current scientific evidence and are intended to improve patient care. If these guidelines are used as the basis for regulatory/payer decisions, the ultimate goal is quality of care and serving the patient’s best interests. The ultimate judgment regarding care of a particular patient must be made by the healthcare provider and patient in light of all of the circumstances presented by that patient. The 2005 guidelines were approved for publication by the governing bodies of the ACCF and the AHA and have been officially endorsed by the American College of Chest
Physicians, the International Society for Heart and Lung Transplantation, and the Heart Rhythm Society. The summary article including recommendations was published in the September 20, 2005, issues of both the Journal of the American College of Cardiology and Circulation. The full-text guideline is posted on the World Wide Web sites of the ACC (www.acc.org) and the AHA (my.americanheart.org). Copies of the full text and the summary article are available from both organizations.

The current document is a re-publication of the “ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult” (2), revised to incorporate updated recommendations and text from a focused update performed during 2008 (3). Recommendations have been updated with new information that has emerged from clinical trials or other ACC/AHA guideline or consensus documents. In addition, the writing committee felt that a new section, the Hospitalized Patient, was necessary to address the increasingly recognized problem of the patient with acute decompensated heart failure, as opposed to the patient with chronic heart failure. Heart failure is now the single most common reason why patients over 65 years are admitted to the hospital, and the updated guidelines review important management principles for this population. For easy reference, this online-only version denotes sections that have been updated.

Elliott M. Antman, MD, FACC, FAHA Chair, ACC/AHA Task Force on Practice Guidelines, 2003–2005

Sidney C. Smith, Jr, MD, FACC, FAHA Chair, ACC/AHA Task Force on Practice Guidelines, 2006–2008

1. Introduction (UPDATED)

Heart failure (HF) is a major and growing public health problem in the United States. Approximately 5 million patients in this country have HF, and over 550,000 patients are diagnosed with HF for the first time each year (4). The disorder is the primary reason for 12 to 15 million office visits and 6.5 million hospital days each year (5). From 1990 to 1999, the annual number of hospitalizations has increased from approximately 810,000 to over 1 million for HF as a primary diagnosis and from 2.4 to 3.6 million for HF as a primary or secondary diagnosis (6). In 2001, nearly 53,000 patients died of HF as a primary cause. The number of HF deaths has increased steadily despite advances in treatment, in part because of increasing numbers of patients with HF due to better treatment and “salvage” of patients with acute myocardial infarctions (MIs) earlier in life (4).

Heart failure is primarily a condition of the elderly (7), and thus the widely recognized “aging of the population” also contributes to the increasing incidence of HF. The incidence of HF approaches 10 per 1000 population after age 65 (4), and approximately 80% of patients hospitalized with HF are more than 65 years old (8). Heart failure is the most common Medicare diagnosis-related group (i.e., hospital discharge diagnosis), and more Medicare dollars are spent for the diagnosis and treatment of HF than for any other diagnosis (9). The total estimated direct and indirect costs for HF in 2005 were approximately $27.9 billion (4). In the United States, approximately $2.9 billion annually is spent on drugs for the treatment of HF (4).

1.1. Evidence Review (UPDATED)

The ACCF and the AHA first published guidelines for the evaluation and management of HF in 1995 and published revised guidelines in 2001 (10). Since that time, a great deal of progress has been made in the development of both pharmacological and nonpharmacological approaches to treatment for this common, costly, disabling, and potentially fatal disorder. The number of available treatments has increased, but this increase has rendered clinical decision making far more complex. The timing and sequence of initiating treatments and the appropriateness of prescribing them in combination are uncertain. The increasing recognition of the existence of clinical HF in patients with a normal ejection fraction (EF) (see Section 4.3.2.1) has also led to heightened awareness of the limitations of evidence-based therapy for this important group of patients. For these reasons, the 2 organizations believed that it was appropriate to reassess and update these guidelines, fully recognizing that the optimal therapy of HF remains a work in progress and that future advances will require that the guideline be updated again.

The recommendations listed in the 2005 guideline are evidence based whenever possible. Pertinent medical literature in the English language was identified through a series of computerized literature searches (including Medline and EMBASE) and a manual search of selected articles. References selected and published in this document are representative but not all inclusive. Recommendations relevant to a class of drugs specify the use of the drugs shown to be effective in clinical trials unless there is reason to believe that such drugs have a broad class effect.

In 2005, the committee elected to focus this document on the prevention of HF and on the diagnosis and management of chronic HF in the adult patient with normal or low LVEF. Other guidelines are relevant to the HF population, and include the ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction (11) and the ACC/AHA 2002 Update of the Guidelines for the Management of Unstable Angina and Non-ST Elevation Myocardial Infarction (12). These guidelines have excluded HF in children, both because the underlying causes of HF in children differ from those in adults and because none of the controlled trials of treatments for HF have included children. We have not considered the management of HF due to primary valvular disease (see ACC/AHA Guidelines on the Management of Patients With Valvular Heart Disease [13]) or congenital malformations, and we have not included recommendations for the treat-
ment of specific myocardial disorders (e.g., hemochromato-
sis, sarcoidosis, or amyloidosis).

For the 2009 focused update, late-breaking clinical trials
presented at the 2005, 2006, and 2007 annual scientific
meetings of the ACCF, AHA, and European Society of
Cardiology, as well as selected other data, from 2005
through November 2007, were reviewed by the standing
guideline writing committee along with the parent task
force to identify those trials and other key data that might
impact guideline recommendations. On the basis of the
criteria/criterions noted earlier, recent trial data and
other clinical information were considered important
enough to prompt a focused update of the ACCF/AHA
2005 Guideline Update for the Diagnosis and Management
of Chronic Heart Failure in the Adult (2). In addition, the
guidelines writing committee thought that a new section on
the management of the hospitalized patient with HF should
be included in this update. A number of recent HF trials
reviewed for this update, were, in fact, performed on
hospitalized patients, and a number of newer therapies are
under development for this population. Moreover, there is
increasing government and other third-party payer interest
in the prevention of HF hospitalizations, and rehospitali-
izations. Quality indicators about the process of discharging
the HF patient have already been developed, and data about
rehospitalizations for HF by hospital have been made
public. Thus, the committee thought that a new section
about this important aspect of HF care should be added to
the update.

When considering the new data for the focused update,
the writing group faced the task of weighing evidence from
studies enrolling large numbers of subjects outside North
America. While noting that practice patterns and the rigor
applied to data collection, as well as the genetic makeup of
subjects, might influence the observed magnitude of a
treatment’s effect, the writing group believed that the data
were relevant to formulation of recommendations for the
management of HF in North America.

1.2. Organization of Committee and Relationships
With Industry (UPDATED)

The 2005 writing committee was composed of 15 members
who represented the ACCF and AHA, as well as invited
participants from the American College of Chest Physi-
cians, the Heart Failure Society of America, the Interna-
tional Society for Heart and Lung Transplantation, the
American Academy of Family Physicians, and the Ameri-
can College of Physicians. Both the academic and private
practice sectors were represented.

For the 2009 focused update, all members of the 2005
HF writing committee were invited to participate; those
who agreed (referred to as the 2009 Focused Update
Writing Group) were required to disclose all relationships
with industry relevant to the data under consideration (1) as
were all peer reviewers of the document (see Appendixes 4
and 5 for a listing of relationships with industry for the 2009
Focused Update Writing Group and peer reviewers, respec-
tively). Each recommendation required a confidential vote
by the writing group members before and after external
review of the document. Writing group members who had
a significant (greater than $10,000) relationship with indus-
try relevant to a recommendation were required to recuse
themselves from voting on that recommendation.

1.3. Review and Approval (NEW)

The 2005 Guideline document was reviewed by 3 official
reviewers nominated by the ACCF, 3 official reviewers
nominated by the AHA, 1 reviewer nominated by the
American Academy of Family Physicians, 2 reviewers
ominated by the American College of Chest Physicians, 1
reviewer nominated by the American College of Physicians,
4 reviewers nominated by the Heart Failure Society of
America, and 1 reviewer nominated by the International
Society for Heart and Lung Transplantation. In addition, 9
content reviewers and the following committees reviewed
the document: ACCF/AHA Committee to Develop Per-
formance Measures for Heart Failure, ACCF/AHA Com-
mittee to Revise Guidelines for the Management of Patients
With Acute Myocardial Infarction, ACCF/AHA/ESC
Committee to Update Guidelines on the Management of
Patients with Atrial Fibrillation, ACCF/AHA Committee
to Update Guidelines on Coronary Artery Bypass Graft
Surgery, ACCF Committee to Develop Data Standards on
Heart Failure, AHA Quality of Care and Outcomes Re-
search Interdisciplinary Working Group Steering Commit-
tee, and AHA Council on Clinical Cardiology Committee
on Heart Failure and Transplantation.

The 2009 focused update was reviewed by 2 external
reviewers nominated by both the ACCF and AHA, as well
as a reviewer from the ACCF/AHA Task Force on Practice
Guidelines, 10 organizational reviewers representing the
American College of Chest Physicians, the American Col-
lege of Physicians, the American Academy of Family
Physicians, the Heart Failure Society of America, and the
International Society for Heart and Lung Transplantation,
and 14 individual content reviewers. All information about
reviewers’ relationships with industry was collected and
distributed to the writing committee and is published in this
document (see Appendix 5 for details).

The 2009 focused update was approved for publication by
the governing bodies of the ACCF and the AHA and
endorsed by the International Society for Heart and Lung
Transplantation.

1.4. Stages of Heart Failure (UPDATED)

The HF writing committee previously developed a new
approach to the classification of HF (2), one that empha-
sized both the development and progression of the
disease. In doing so, they identified 4 stages involved in
the development of the HF syndrome. The first 2 stages
(A and B) are clearly not HF but are an attempt to help
healthcare providers with the early identification of
patients who are at risk for developing HF. Stages A and B patients are best defined as those with risk factors that clearly predispose toward the development of HF. For example, patients with coronary artery disease, hypertension, or diabetes mellitus who do not yet demonstrate impaired left ventricular (LV) function, hypertrophy, or geometric chamber distortion would be considered Stage A, whereas patients who are asymptomatic but demonstrate LV hypertrophy (LVH) and/or impaired LV function would be designated as Stage B. Stage C then denotes patients with current or past symptoms of HF associated with underlying structural heart disease (the bulk of patients with HF), and Stage D designates patients with truly refractory HF who might be eligible for specialized, advanced treatment strategies, such as mechanical circulatory support, procedures to facilitate fluid removal, continuous inotropic infusions, or cardiac transplantation or other innovative or experimental surgical procedures, or for end-of-life care, such as hospice.

This classification recognizes that there are established risk factors and structural prerequisites for the development of HF and that therapeutic interventions introduced even before the appearance of LV dysfunction or symptoms can reduce the population morbidity and mortality of HF. This classification system is intended to complement but in no way to replace the New York Heart Association (NYHA) functional classification, which primarily gauges the severity of symptoms in patients who are in Stage C or Stage D. It has been recognized for many years that the NYHA functional classification reflects a subjective assessment by a healthcare provider and can change frequently over short periods of time. It has also been recognized that the treatments used may not differ significantly across the classes. Therefore, the committee believed that a staging system was needed that would reliably and objectively identify patients during the course of their developing disease and that would be linked to treatments uniquely appropriate at each stage of illness. According to this new staging approach, patients would only be expected to either not advance at all or to advance from one stage to the next, unless progression of the disease was slowed or stopped by treatment, and spontaneous reversal of this progression would be considered unusual. For instance, although symptoms (NYHA functional class) might vary widely over time (in response to therapy or to progression of disease) in a patient who has already developed the clinical syndrome of HF (Stage C), the patient could never return to Stage B (never had HF), and therapies recommended for Stage C will be appropriate even if this patient is in NYHA class I. This new classification scheme adds a useful dimension to our thinking about HF that is similar to that achieved by staging or risk assessment systems for other disorders (e.g., those used in the approach to cancer).

2. Characterization of Heart Failure as a Clinical Syndrome

2.1. Definition of Heart Failure

Heart failure is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood. The cardinal manifestations of HF are dyspnea and fatigue, which may limit exercise tolerance, and fluid retention, which may lead to pulmonary congestion and peripheral edema. Both abnormalities can impair the functional capacity and quality of life of affected individuals, but they do not necessarily dominate the clinical picture at the same time. Some patients have exercise intolerance but little evidence of fluid retention, whereas others complain primarily of edema and report few symptoms of dyspnea or fatigue. Because not all patients have volume overload at the time of initial or subsequent evaluation, the term “heart failure” is preferred over the older term “congestive heart failure.”

The clinical syndrome of HF may result from disorders of the pericardium, myocardium, endocardium, or great vessels, but the majority of patients with HF have symptoms due to an impairment of LV myocardial function. Heart failure may be associated with a wide spectrum of LV functional abnormalities, which may range from patients with normal LV size and preserved EF to those with severe dilatation and/or markedly reduced EF. In most patients, abnormalities of systolic and diastolic dysfunction coexist, regardless of EF. Patients with normal EF may have a different natural history and may require different treatment strategies than patients with reduced EF, although such differences remain controversial (see Section 4.3.2.1).

Coronary artery disease, hypertension, and dilated cardiomyopathy are the causes of HF in a substantial proportion of patients in the Western world. As many as 30% of patients with dilated cardiomyopathy may have a genetic cause (14). Valvular heart disease is still a common cause of HF. In fact, nearly any form of heart disease may ultimately lead to the HF syndrome.

It should be emphasized that HF is not equivalent to cardiomyopathy or to LV dysfunction; these latter terms describe possible structural or functional reasons for the development of HF. Instead, HF is defined as a clinical syndrome that is characterized by specific symptoms (dyspnea and fatigue) in the medical history and signs (edema, rales) on the physical examination. There is no single diagnostic test for HF because it is largely a clinical diagnosis that is based on a careful history and physical examination.

2.2. Heart Failure as a Symptomatic Disorder

The approach that is most commonly used to quantify the degree of functional limitation imposed by HF is one first developed by the NYHA. This system assigns patients to 1 of 4 functional classes, depending on the degree of effort...
needed to elicit symptoms: patients may have symptoms of HF at rest (class IV), on less-than-ordinary exertion (class III), on ordinary exertion (class II), or only at levels of exertion that would limit normal individuals (class I). Although the functional class tends to deteriorate over periods of time, most patients with HF do not typically show an uninterrupted and inexorable worsening of symptoms. Instead, the severity of symptoms characteristically fluctuates even in the absence of changes in medications, and changes in medications and diet can have either favorable or adverse effects on functional capacity in the absence of measurable changes in ventricular function. Some patients may demonstrate remarkable recovery, sometimes associated with improvement in structural and functional abnormalities. Usually, sustained improvement is associated with drug therapy, and that therapy should be continued indefinitely.

The mechanisms responsible for the exercise intolerance of patients with chronic HF have not been defined clearly. Although HF is generally regarded as a hemodynamic disorder, many studies have indicated that there is a poor relation between measures of cardiac performance and the symptoms produced by the disease. Patients with a very low EF (see Section 4.3.2.1) may be asymptomatic, whereas patients with preserved LVEF may have severe disability. The apparent discordance between EF and the degree of functional impairment is not well understood but may be explained in part by alterations in ventricular distensibility, valvular regurgitation, pericardial restraint, cardiac rhythm, conduction abnormalities, and right ventricular function (14). In addition, in ambulatory patients, many noncardiac factors may contribute substantially to exercise intolerance. These factors include but are not limited to changes in peripheral vascular function, skeletal muscle physiology, pulmonary dynamics, neurohormonal and reflex autonomic activity, and renal sodium handling. The existence of these noncardiac factors may explain why the hemodynamic improvement produced by therapeutic agents in patients with chronic HF may not be immediately or necessarily translated into clinical improvement. Although pharmacological interventions may produce rapid changes in hemodynamic variables, signs and symptoms may improve slowly over weeks or months or not at all.

2.3. Heart Failure as a Progressive Disorder

Left ventricular dysfunction begins with some injury to, or stress on, the myocardium and is generally a progressive process, even in the absence of a new identifiable insult to the heart. The principal manifestation of such progression is a change in the geometry and structure of the LV, such that the chamber dilates and/or hypertrophies and becomes more spherical—a process referred to as cardiac remodeling. This change in chamber size and structure not only increases the hemodynamic stresses on the walls of the failing heart and depresses its mechanical performance but may also increase regurgitant flow through the mitral valve. These effects, in turn, serve to sustain and exacerbate the remodeling process. Cardiac remodeling generally precedes the development of symptoms (occasionally by months or even years), continues after the appearance of symptoms, and contributes substantially to worsening of symptoms despite treatment. Progression of coronary artery disease, diabetes mellitus, hypertension, or the onset of atrial fibrillation may also contribute to the progression of HF. The development of structural abnormalities can have 1 of 3 outcomes: 1) patients die before developing symptoms (in Stage A or B), 2) patients develop symptoms controlled by treatment, or 3) patients die of progressive HF. Sudden death can interrupt this course at any time.

Although several factors can accelerate the process of LV remodeling, there is substantial evidence that the activation of endogenous neurohormonal systems plays an important role in cardiac remodeling and thereby in the progression of HF. Patients with HF have elevated circulating or tissue levels of norepinephrine, angiotensin II, aldosterone, endothelin, vasopressin, and cytokines, which can act (alone or in concert) to adversely affect the structure and function of the heart. These neurohormonal factors not only increase the hemodynamic stresses on the ventricle by causing sodium retention and peripheral vasoconstriction but may also exert direct toxic effects on cardiac cells and stimulate myocardial fibrosis, which can further alter the architecture and impair the performance of the failing heart. Neurohormonal activation also has direct deleterious effects on the myocytes and interstitium, altering the performance and phenotype of these cells.

The development of HF can be appropriately characterized by considering 4 stages of the disease, as described in the Introduction. This staging system recognizes that HF, like coronary artery disease, has established risk factors and structural prerequisites; that the development of HF has asymptomatic and symptomatic phases; and that specific treatments targeted at each stage can reduce the morbidity and mortality of HF (Figure 1).

3. Initial and Serial Clinical Assessment of Patients Presenting With Heart Failure (UPDATED)

The changes in this section are made to clarify the role of functional assessment of the HF patient, beyond the NYHA functional classification, and to expand on the use of B-type natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) testing within the context of the overall evaluation of the patient (Table 2).

Recommendations for Initial Clinical Assessment of Patients Presenting With Heart Failure

CLASS I

1. A thorough history and physical examination should be obtained/ performed in patients presenting with HF to identify cardiac and
noncardiac disorders or behaviors that might cause or accelerate the development or progression of HF. (Level of Evidence: C)

2. A careful history of current and past use of alcohol, illicit drugs, current or past standard or “alternative therapies,” and chemotherapy drugs should be obtained from patients presenting with HF. (Level of Evidence: C)

3. In patients presenting with HF, initial assessment should be made of the patient’s ability to perform routine and desired activities of daily living. (Level of Evidence: C)

4. Initial examination of patients presenting with HF should include assessment of the patient’s volume status, orthostatic blood pressure changes, measurement of weight and height, and calculation of body mass index. (Level of Evidence: C)

5. Initial laboratory evaluation of patients presenting with HF should include complete blood count, urinalysis, serum electrolytes (including calcium and magnesium), blood urea nitrogen, serum creatinine, fasting blood glucose (glycohemoglobin), lipid profile, liver function tests, and thyroid-stimulating hormone. (Level of Evidence: C)

6. Twelve-lead electrocardiogram and chest radiograph (posterior-anterior and lateral) should be performed initially in all patients presenting with HF. (Level of Evidence: C)

7. Two-dimensional echocardiography with Doppler should be performed during initial evaluation of patients presenting with HF to assess LVEF, left ventricular size, wall thickness, and valve function. Radionuclide ventriculography can be performed to assess LVEF and volumes. (Level of Evidence: C)

8. Coronary arteriography should be performed in patients presenting with HF who have angiina or significant ischemia unless the patient is not eligible for revascularization of any kind (15–19). (Level of Evidence: B)

CLASS IIa

1. Coronary arteriography is reasonable for patients presenting with HF who have chest pain that may or may not be of cardiac origin who have not had evaluation of their coronary anatomy and who have no contraindications to coronary revascularization. (Level of Evidence: C)

2. Coronary arteriography is reasonable for patients presenting with HF who have known or suspected coronary artery disease but who do not have angiina unless the patient is not eligible for revascularization of any kind. (Level of Evidence: C)

3. Noninvasive imaging to detect myocardial ischemia and viability is reasonable in patients presenting with HF who have known coronary artery disease and no angiina unless the patient is not eligible for revascularization of any kind (20). (Level of Evidence: B)

4. Maximal exercise testing with or without measurement of respiratory gas exchange and/or blood oxygen saturation is reasonable in patients presenting with HF to help determine whether HF is the cause of exercise limitation when the contribution of HF is uncertain. (Level of Evidence: C)

5. Maximal exercise testing with measurement of respiratory gas exchange is reasonable to identify high-risk patients presenting...
with HF who are candidates for cardiac transplantation or other advanced treatments (21–23). (Level of Evidence: B)

6. Screening for hemochromatosis, sleep-disturbed breathing, or human immunodeficiency virus is reasonable in selected patients who present with HF. (Level of Evidence: C)

7. Diagnostic tests for rheumatologic diseases, amyloidosis, or pheochromocytoma are reasonable in patients presenting with HF in whom there is a clinical suspicion of these diseases. (Level of Evidence: C)

8. Endomyocardial biopsy can be useful in patients presenting with HF when a specific diagnosis is suspected that would influence therapy (24). (Level of Evidence: C)

9. Measurement of natriuretic peptides (BNP and NT-proBNP) can be useful in the evaluation of patients presenting in the urgent care setting in whom the clinical diagnosis of HF is uncertain. Measurement of natriuretic peptides (BNP and NT-proBNP) can be helpful in risk stratification (25–32). (Level of Evidence: A)

CLASS IIb

1. Noninvasive imaging may be considered to define the likelihood of coronary artery disease in patients with HF and LV dysfunction. (Level of Evidence: C)

2. Holter monitoring might be considered in patients presenting with HF who have a history of MI and are being considered for electrophysiologic study to document VT inducibility. (Level of Evidence: C)

CLASS III

1. Endomyocardial biopsy should not be performed in the routine evaluation of patients with HF (24). (Level of Evidence: C)

2. Routine use of signal-averaged electrocardiography is not recommended for the evaluation of patients presenting with HF. (Level of Evidence: C)

3. Routine measurement of circulating levels of neurohormones (e.g., norepinephrine or endothelin) is not recommended for patients presenting with HF. (Level of Evidence: C)

Recommendations for Serial Clinical Assessment of Patients Presenting With Heart Failure

CLASS I

1. Assessment should be made at each visit of the ability of a patient with HF to perform routine and desired activities of daily living. (Level of Evidence: C)

2. Assessment should be made at each visit of the volume status and weight of a patient with HF. (Level of Evidence: C)

3. Careful history of current use of alcohol, tobacco, illicit drugs, “alternative therapies,” and chemotherapy drugs, as well as diet and sodium intake, should be obtained at each visit of a patient with HF. (Level of Evidence: C)

CLASS IIa

1. Repeat measurement of EF and the severity of structural remodeling can be useful to provide information in patients with HF who have had a change in clinical status or who have experienced or recovered from a clinical event or received treatment that might have had a significant effect on cardiac function. (Level of Evidence: C)

CLASS IIb

1. The value of serial measurements of BNP to guide therapy for patients with HF is not well established. (Level of Evidence: C)

3.1. Initial Evaluation of Patients

3.1.1. Identification of Patients (UPDATED)

In general, patients with LV dysfunction or HF present to the healthcare provider in 1 of 3 ways:

1. With a syndrome of decreased exercise tolerance. Most patients with HF seek medical attention with complaints of a reduction in their effort tolerance due to dyspnea and/or fatigue. These symptoms, which may occur at rest or during exercise, may be attributed inappropriately by the patient and/or healthcare provider to aging, other physiological abnormalities (e.g., deconditioning), or other medical disorders (e.g., pulmonary disease). Therefore, in a patient whose exercise capacity is limited by dyspnea or fatigue, the healthcare provider must determine whether the principal cause is HF or another abnormality. Elucidation of the precise reason for exercise intolerance can be difficult because several disorders may coexist in the same patient. A clear distinction can sometimes be made only by measurements of gas exchange or blood oxygen saturation or by invasive hemodynamic measurements during graded levels of exercise (see ACC/AHA 2002 Guideline Update for Exercise Testing [33]).

2. With a syndrome of fluid retention. Patients may present with complaints of leg or abdominal swelling as their primary (or only) symptom. In these patients, the impairment of exercise tolerance may occur so gradually that it may not be noted unless the patient is questioned carefully and specifically about a change in activities of daily living.

3. With no symptoms or symptoms of another cardiac or noncardiac disorder. During their evaluation for a disorder other than HF (e.g., abnormal heart sounds or abnormal electrocardiogram or chest x-ray, hypertension or hypotension, diabetes mellitus, an acute myocardial infarction (MI), an arrhythmia, or a pulmonary or systemic thromboembolic event), patients may be found to have evidence of cardiac enlargement or dysfunction.

A variety of approaches have been used to quantify the degree of functional limitation imposed by HF. The most widely used scale is the NYHA functional classification (34), but this system is subject to considerable interobserver variability and is insensitive to important changes in exercise capacity. These limitations may be overcome by formal tests of exercise tolerance. Measurement of the distance that a patient can walk in 6 minutes may have prognostic significance and may help to assess the level of functional impairment in the very sick, but serial changes in walking distance may not parallel changes in clinical status. Maximal exercise testing, with measurement of peak oxygen uptake, has been used to identify appropriate candidates for cardiac transplantation, to determine disability, and to assist in the formulation of an exercise prescription, but its role in the
general management of patients with HF has not been defined.

3.1.2. Identification of a Structural and Functional Abnormality (UPDATED)

A complete history and physical examination are the first steps in evaluating the structural abnormality or cause responsible for the development of HF. Direct inquiry may reveal prior or current evidence of MI, valvular disease, or congenital heart disease, whereas examination of the heart may suggest the presence of cardiac enlargement, murmurs, or a third heart sound. Although the history and physical examination may provide important clues about the nature of the underlying cardiac abnormality, identification of the structural abnormality leading to HF generally requires invasive or noninvasive imaging of the cardiac chambers or great vessels.

The single most useful diagnostic test in the evaluation of patients with HF is the comprehensive 2-dimensional echocardiogram coupled with Doppler flow studies to determine whether abnormalities of myocardium, heart valves, or pericardium are present and which chambers are involved. Three fundamental questions must be addressed: 1) Is the LV ejection fraction (EF) preserved or reduced? 2) Is the structure of the LV normal or abnormal? 3) Are there other structural abnormalities such as valvular, pericardial, or right ventricular abnormalities that could account for the clinical presentation? This information should be quantified with a numerical estimate of EF, measurement of ventricular dimensions and/or volumes, measurement of wall thickness, and evaluation of chamber geometry and regional wall motion.

Right ventricular size and systolic performance should be assessed. Atrial size should also be determined semiquantitatively and left atrial dimensions and/or volumes measured. All valves should be evaluated for anatomic and flow abnormalities to exclude the presence of primary valve disease. Secondary changes in valve function, particularly the severity of mitral and tricuspid valve insufficiency, should be determined.

Noninvasive hemodynamic data acquired at the time of echocardiography are an important additional correlate for patients with preserved or reduced EF. Combined quantification of the mitral valve inflow pattern, pulmonary venous inflow pattern, and mitral annular velocity provides data about characteristics of LV filling and left atrial pressure. Evaluation of the tricuspid valve regurgitant gradient coupled with measurement of inferior vena cava dimension and its response during respiration provides an estimate of systolic pulmonary artery pressure and central venous pressure. Stroke volume may be determined with combined dimension measurement and pulsed Doppler in the LV outflow tract (35). However, abnormalities can be present in any of these parameters in the absence of HF. No single parameter necessarily correlates specifically with HF; however, a totally normal filling pattern argues against clinical HF.

A comprehensive echocardiographic evaluation is important, because it is common for patients to have more than 1 cardiac abnormality that contributes to the development of HF. Furthermore, the study may serve as a baseline for comparison, because measurement of EF and the severity of structural remodeling can provide useful information in patients who have had a change in clinical status or who have experienced or recovered from a clinical event or received treatment that might have had a significant effect on cardiac function.

Other tests may be used to provide information regarding the nature and severity of the cardiac abnormality. Radionuclide ventriculography can provide highly accurate measurements of LV function and right ventricular EF, but it is unable to directly assess valvular abnormalities or cardiac hypertrophy. Magnetic resonance imaging or computed tomography may be useful in evaluating chamber size and ventricular mass, detecting right ventricular dysplasia, or recognizing the presence of pericardial disease, as well as in assessing cardiac function and wall motion (36).

Magnetic resonance imaging may also be used to identify myocardial viability and scar tissue (37). Chest radiography can be used to estimate the degree of cardiac enlargement and pulmonary congestion or to detect the presence of pulmonary disease. A 12-lead electrocardiogram may demonstrate evidence of prior MI, LV hypertrophy, cardiac conduction abnormality (e.g., left bundle-branch block), or a cardiac arrhythmia. However, because of their low sensitivity and specificity, neither the chest x-ray nor the electrocardiogram should form the primary basis for determining the specific cardiac abnormality responsible for the development of HF.

3.1.3. Evaluation of the Cause of Heart Failure

Identification of the condition responsible for the cardiac structural and/or functional abnormalities may be important, because some conditions that lead to LV dysfunction are potentially treatable and/or reversible. Efforts to identify a cause frequently allow the detection of coexistent conditions that may contribute to or exacerbate the severity of symptoms. However, it may not be possible to discern the cause of HF in many patients presenting with this syndrome, and in others, the underlying condition may not be amenable to treatment. Hence, clinicians should focus their efforts on diagnoses that have implications for therapy.

3.1.3.1. HISTORY AND PHYSICAL EXAMINATION

Evaluation of potential causative factors begins with a thorough history and careful physical examination (see Table 2). Healthcare providers should inquire about a history of hypertension; diabetes mellitus; dyslipidemia; tobacco use; coronary, valvular, or peripheral vascular disease; rheumatic fever; heart murmur or congenital heart disease; personal or family history of myopathy; mediastinal...
irradiation; sleep-disordered breathing; and exposure to cardiotoxic agents, including ephedra, and antineoplastic agents such as anthracyclines, trastuzumab (Herceptin, an antibody for the treatment of breast cancer), or high-dose cyclophosphamide. Heart failure may occur years after exposure to anthracyclines or mediastinal irradiation. Patients should be questioned carefully about illicit drug use, current and past alcohol consumption, symptoms suggestive of sleep-disordered breathing, and exposure to sexually transmitted diseases. The history and physical evaluation should include specific consideration of noncardiac diseases such as collagen vascular disease, bacterial or parasitic infection, obesity, thyroid excess or deficiency, amyloidosis, and pheochromocytoma. The physical examination should document specific signs of right or left HF, with particular attention to the presence of elevated jugular venous pressure and a third heart sound, because these have been shown to have prognostic significance (38).

A detailed family history should be obtained not only to determine whether there is a familial predisposition to atherosclerotic disease but also to identify relatives with cardiomyopathy, sudden unexplained death, conduction system disease, and skeletal myopathies. Recent studies suggest that as many as 30% of cases of idiopathic dilated cardiomyopathy may be familial, and polymorphisms in genes encoding cardiac proteins may provide important prognostic information (39). However, the cost-effectiveness of family screening has not been established, and determination of the genotype of patients with familial cardiomyopathies or investigation of genetic polymorphisms is not routinely performed. Instead, an electrocardiogram and echocardiogram should be considered in first-degree relatives of patients with a dilated cardiomyopathy, and families with multiple cases of dilated cardiomyopathy should be referred to a center with expertise in genetic analysis and counseling.

3.1.3.2. LABORATORY TESTING (UPDATED)

Laboratory testing may reveal the presence of disorders or conditions that can lead to or exacerbate HF. The initial evaluation of patients with HF should include a complete blood count, urinalysis, serum electrolytes (including calcium and magnesium), glycohemoglobin, and blood lipids, as well as tests of both renal and hepatic function, a chest radiograph, and a 12-lead electrocardiogram. Thyroid function tests (especially thyroid-stimulating hormone) should be measured, because both hyperthyroidism and hypothyroidism can be a primary or contributory cause of HF. A fasting transferrin saturation is useful to screen for hemochromatosis; several mutated alleles for this disorder are common in individuals of Northern European descent, and affected patients may show improvement in LV function after treatment with phlebotomy and chelating agents. Magnetic resonance imaging of the heart or liver may be needed to confirm the presence of iron overload. Screening for human immunodeficiency virus (HIV) is reasonable and should be considered for all high-risk patients. However, other clinical signs of HIV infection typically precede any HF symptoms in those patients who develop HIV cardiomyopathy. Serum titers of antibodies developed in response to infectious organisms are occasionally measured in patients with a recent onset of HF (especially in those with a recent viral syndrome), but the yield of such testing is low, and the therapeutic implications of a positive result are uncertain (see a recent review of the role of endomyocardial biopsy (24), and Section 3.1.3.4, Evaluation of the Possibility of Myocardial Disease. Assays for connective tissue diseases and for pheochromocytoma should be performed if these diagnoses are suspected, and serum titers of Chagas disease antibodies should be checked in patients with nonsimicardiac cardiomyopathy who have traveled in or immigrated from an endemic region.

Several recent assays have been developed for natriuretic peptides (BNP and NT-proBNP). Several of the natriuretic peptides are synthesized by and released from the heart. Elevated plasma BNP levels have been associated with reduced LVEF (40), LV hypertrophy, elevated LV filling pressures, and acute MI and ischemia, although they can occur in other settings, such as pulmonary embolism and chronic obstructive pulmonary disease.

Natriuretic peptides are sensitive to other biological factors, such as age, sex, weight, and renal function (41). Elevated levels lend support to a diagnosis of abnormal ventricular function or hemodynamics causing symptomatic HF (42). Trials with these diagnostic markers suggest use in the urgent-care setting, where they have been used in combination with clinical evaluation to differentiate dyspnea due to HF from dyspnea of other causes (15), and suggest that its use may reduce both the time to hospital discharge and the cost of treatment (43). BNP levels tend to be less
Elevated natriuretic peptides may be elevated meaningfully in women and in people over 60 years of age who do not have HF, and thus these levels should be interpreted cautiously in such individuals when distinguishing between cardiac and noncardiac causes of dyspnea. Elevated natriuretic peptide levels may lend weight to a suspected diagnosis of HF or trigger consideration of HF when the diagnosis is unknown but should not be used in isolation to confirm or exclude the presence of HF (43, 46).

3.1.3.3. Evaluation of the Possibility of Coronary Artery Disease
Coronary artery disease is believed to be the underlying cause in approximately two thirds of patients with HF and low EF and also contributes to the progression of HF through mechanisms that include endothelial dysfunction, ischemia, and infarction. Recent cohort studies suggest that there is less often a history of prior MI in patients with HF and preserved EF, although coronary artery disease is often evident on angiography or at autopsy (47–49). Therefore, it may be useful to define the presence, anatomic characteristics, and functional significance of coronary artery disease in selected patients who present with this syndrome.

Patients with Coronary Artery Disease and Angina.
Coronary artery bypass grafting has been shown to improve symptoms and survival in patients with modestly reduced EF (variably defined in clinical trials) and angina, although patients with HF or markedly reduced EFs were not included in these studies (15). An ongoing National Institutes of Health–funded trial is evaluating the utility of surgical revascularization in such patients. Because revascularization is recommended in individuals with significant ischemic chest pain regardless of the degree of ischemia or viability, there would appear to be little role for noninvasive cardiac testing in such patients. Clinicians should proceed directly to coronary angiography in patients who have angina and impaired ventricular function (16).

Patients with Coronary Artery Disease and No Angina.
Controlled trials have not addressed the issue of whether coronary revascularization can improve clinical outcomes in patients with HF who do not have angina. Nevertheless, the ACC/AHA 2004 Guideline Update for Coronary Artery Bypass Graft Surgery (16) recommends revascularization in patients with a significant left main stenosis and in patients who have large areas of noninfarcted but hypoperfused and hypocontractile myocardium on noninvasive testing.

Observational studies have shown that revascularization can favorably affect LV function in some patients with impaired yet viable myocardium, but it is not clear how such patients should be identified because the sensitivity and specificity of an abnormal imaging test have not been validated in patients with HF (50). Additional studies are needed to determine whether the possibility of myocardial ischemia or viability should be evaluated routinely to assess the contribution of coronary artery disease in patients with HF and reduced LVEF who do not have angina (see the ACC/AHA/ASE 2003 Guideline Update for the Clinical Application of Echocardiography [51] and the ACC/AHA/ASNC Guidelines for Clinical Use of Cardiac Radionuclide Imaging [52]).

Patients in Whom the Possibility of Coronary Artery Disease Has Not Been Evaluated.
Up to one third of patients with nonischemic cardiomyopathy complain of chest pain, which may resemble angina or may be atypical in nature. Because coronary revascularization would play a role in the management of these patients if their chest pain were related to the presence of coronary artery disease, coronary angiography is generally recommended in these circumstances to define the presence or absence of large-vessel coronary obstructions. Although many healthcare providers perform noninvasive testing before coronary angiography in these patients, inhomogeneous nuclear images and abnormal wall-motion patterns are common in patients with a nonischemic cardiomyopathy. Hence, in most situations, clinicians should proceed directly to coronary angiography in patients who have HF and chest pain.

How should healthcare providers evaluate patients with HF due to LV dysfunction who do not have chest pain and who do not have a history of coronary artery disease? The use of coronary angiography appears reasonable in young patients to exclude the presence of congenital coronary anomalies. In older patients, however, efforts to detect the presence of coronary artery disease may not be worthwhile, because revascularization has not been shown to improve clinical outcomes in patients without angina (16). Nevertheless, the observation that revascularization might have a favorable effect on LV function has led some experts to suggest that coronary artery disease should be excluded whenever possible, especially in patients with diabetes mellitus or other states associated with silent myocardial ischemia. Only coronary arteriography can reliably demonstrate or exclude the presence of obstructed coronary vessels, because perfusion deficits and segmental wall-motion abnormalities suggestive of coronary artery disease are commonly present in patients with a nonischemic cardiomyopathy on noninvasive imaging.

In patients in whom coronary artery disease has been excluded previously as the cause of LV dysfunction, repeated invasive or noninvasive assessment for ischemia is generally not indicated unless there is a change in clinical status that suggests the interim development of ischemic disease.

3.1.3.4. Evaluation of the Possibility of Myocardial Disease
One half of patients with HF and low EF have normal or near-normal coronary arteries on coronary angiography, and myocardial disorders are responsible for the development of cardiomyopathy in most such individuals (17). Most patients with a cardiomyopathy have no identifiable causative...
factor (i.e., idiopathic dilated cardiomyopathy), but in some patients, the cardiomyopathy is related to a systemic disorder (e.g., hypertension, diabetes mellitus, hyperthyroidism, hemochromatosis, or hypocalcemia), exposure to a cardiotoxic agent (alcohol, cocaine, methamphetamine, anthracycline, or trastuzumab), or the presence of myocardial inflammation or infiltration.

Although some of these conditions may be detected by endomyocardial biopsy, the overall usefulness of endomyocardial biopsy in the evaluation of patients with a cardiomyopathy of unknown cause is not clear (53). Most patients with a nonischemic cardiomyopathy show nonspecific changes on biopsy (including hypertrophy, cell loss, and fibrosis), and it has not been established conclusively how biopsy findings (even when positive) affect patient management (54). For example, an endomyocardial biopsy might detect inflammatory cell infiltrates attributed to viral myocarditis in some patients with acute or even chronic HF. Nevertheless, many patients with biopsy-proven myocarditis improve with supportive care only, without specific antiviral or anti-inflammatory treatment; the prognosis of these patients has not been influenced clearly by immunosuppression (55). Similarly, an endomyocardial biopsy can be used to make a diagnosis of sarcoidosis and amyloidosis, but changes characteristic of these disorders are often missed on histological evaluation, and there is no conclusive evidence that treatment can favorably affect the course of these diseases.

Examples of cases in which a biopsy might be helpful usually occur in a setting in which the cause of the cardiomyopathy is already suspected because of other supportive data. Tissue obtained by biopsy can be used to make the diagnosis of hemochromatosis, endocardial fibroelastosis, and Loeffler’s syndrome in patients in whom these disorders are suspected on clinical grounds. Biopsy tissue may also be used to assess the risk of continued anthracycline therapy in patients with cancer, especially when combined with imaging of ventricular function (56,57). Biopsies can confirm the presence of cardiac disorders that often might weigh against eligibility for heart transplantation (e.g., amyloidosis). Finally, the biopsy can be used to identify patients with giant-cell myocarditis, who generally progress rapidly to death and are unresponsive to treatment and who thus may be considered for mechanical circulatory support or immediate heart transplantation (58).

However, endomyocardial biopsy is not indicated in the routine evaluation of cardiomyopathy. Although the risk of a serious complication is less than 1% in centers experienced in this technique, biopsies should be performed only when there is a strong reason to believe that the results will have a meaningful effect on subsequent therapeutic decisions or prognosis and only by operators experienced in its performance.

3.2. Ongoing Evaluation of Patients

Once the nature and cause of the structural abnormalities leading to the development of HF have been defined, healthcare providers should focus on the clinical assessment of patients, both during the initial presentation and during subsequent visits. This clinical assessment should identify symptoms and their functional consequences and should evaluate the short- and long-term risks of disease progression and death whenever appropriate. This ongoing review of the patient’s clinical status is critical to the appropriate selection and monitoring of treatments.

3.2.1. Assessment of Functional Capacity

During the initial and subsequent visits, healthcare providers should inquire about the type, severity, and duration of symptoms that occur during activities of daily living and that may impair the patient’s functional capacity. Questions regarding the ability to perform specific tasks may provide greater insight than general inquiries about what symptoms the patient is experiencing, because many patients curtail their activities to limit discomfort. Patients with modest limitations of activity should be asked about their participation in sports or their ability to perform strenuous exercise, whereas patients with substantial limitations of activity should be asked about their ability to get dressed without stopping, take a shower or bath, climb stairs, or perform specific routine household chores. A useful approach is to ask patients to describe activities that they would like to do but can no longer perform, because changes in the ability to perform specific tasks are generally related to important changes in clinical status or course. Ideally, these inquiries should be coupled with direct observations of the patient during a walk around the clinic or up the stairs.

A variety of approaches have been used to quantify the degree of functional limitation imposed by HF. The most widely used scale is the NYHA functional classification (34), but this system is subject to considerable interobserver variability and is insensitive to important changes in exercise capacity. These limitations may be overcome by formal tests of exercise tolerance. Measurement of the distance that a patient can walk in 6 minutes may have prognostic significance and may help to assess the level of functional impairment in the very sick, but serial changes in walking distance may not parallel changes in clinical status. Maximal exercise testing, with measurement of peak oxygen uptake, has been used to identify appropriate candidates for cardiac transplantation, to determine disability, and to assist in the formulation of an exercise prescription, but its role in the general management of patients with HF has not been defined.

3.2.2. Assessment of Volume Status

It is critically important for healthcare providers to evaluate the fluid or volume status of patients with HF during the initial visit and each follow-up examination. This assess-
ment plays a pivotal role in determining the need for diuretic therapy and in detecting sodium excesses or deficiencies that may limit efficacy and decrease the tolerability of drugs used to treat HF. The physical examination is the primary step in evaluating the presence and severity of fluid retention in patients with HF. At each visit, healthcare providers should record the patient’s body weight and sitting and standing blood pressures and determine the degree of jugular venous distension and its response to abdominal pressure, the presence and severity of organ congestion (pulmonary rales and hepatomegaly), and the magnitude of peripheral edema in the legs, abdomen, presacral area, and scrotum, as well as ascites in the abdomen.

The most reliable sign of volume overload is jugular venous distention (59–61). Right-sided filling pressures are elevated in the basal state or with abdominal compression (hepatojugular reflux) in many patients with chronically elevated elevated left-sided filling pressures (62). Most patients with peripheral edema should also be considered to have volume overload, but the possibility of noncardiac causes for edema may limit the utility of this sign in some patients. In contrast, most patients with chronic HF do not have rales. This is true even in patients with end-stage disease who have markedly elevated left-sided filling pressures. The presence of rales generally reflects the rapidity of onset of HF rather than the degree of volume overload. Indeed, many patients with chronic HF have elevated intravascular volume in the absence of peripheral edema or rales. Studies using 131I-tagged albumin have demonstrated plasma volume expansion in more than 50% of patients in whom clinical volume overload was not recognized (63).

Short-term changes in fluid status are best assessed by measuring changes in body weight; however, changes in body weight may be less reliable during long periods of follow-up, because many patients may gain nonfluid weight and others may lose skeletal muscle mass and body fat as HF progresses due to the development of cardiac cachexia.

The majority of patients with clinical evidence of volume overload do not exhibit hypoperfusion, even though cardiac performance may be severely depressed. Clinical signs of hypoperfusion become most apparent when cardiac output declines markedly or abruptly. Clues that suggest the presence of such a marked reduction in cardiac output include narrow pulse pressure, cool extremities, altered mentalation, Cheyne-Stokes respiration, resting tachycardia, and a disproportionate elevation of blood urea nitrogen relative to serum creatinine. Renal dysfunction in HF is poorly understood and appears to be mediated by interactions between the heart and kidney beyond those primarily due to depressed cardiac output (41).

3.2.3. Laboratory Assessment (UPDATED)

Serum electrolytes and renal function should be monitored routinely in patients with HF. Of particular importance is the serial measurement of serum potassium concentration, because hypokalemia is a common adverse effect of treatment with diuretics and may cause fatal arrhythmias and increase the risk of digitalis toxicity, whereas hyperkalemia may complicate therapy with angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), and aldosterone antagonists. Worsening renal function may require adjustment of the doses of diuretics, renin-angiotensin-aldosterone system antagonists, digoxin, and noncardiac medications. Development of hyponatremia or anemia may be a sign of disease progression and is associated with impaired survival.

Serum BNP levels have been shown to parallel the clinical severity of HF as assessed by NYHA functional class in broad populations. Levels are higher in hospitalized patients and tend to decrease during aggressive therapy for decompensation (see Section 3.1.3.2, Laboratory Testing) (42). Indeed, there is an increasing body of evidence demonstrating the power of the addition of BNP (or NT-proBNP) levels in the assessment of prognosis in a variety of cardiovascular disorders. However, it cannot be assumed that BNP levels can be used effectively as targets for adjustment of therapy in individual patients. Many patients taking optimal doses of medications continue to show markedly elevated levels of BNP, and some patients demonstrate BNP levels within the normal range despite advanced HF. The use of BNP measurements to guide the titration of drug doses has not been shown conclusively to improve outcomes more effectively than achievement of the target doses of drugs shown in clinical trials to prolong life (64). Ongoing trials will help to determine the role of serial BNP (or other natriuretic peptides) measurements in both diagnosis and management of HF.

Serial chest radiographs are not recommended in the management of chronic HF. Although the cardiothoracic ratio is commonly believed to reflect the cardiac dilatation that is characteristic of HF, enlargement of the cardiac silhouette primarily reflects changes in right ventricular volume rather than LV function, because the right ventricle forms most of the border of dilated hearts on radiographs. Similarly, changes in the radiographic assessment of pulmonary vascular congestion are too insensitive to detect any but the most extreme changes in fluid status (65).

Repeat assessment of EF may be most useful when the patient has demonstrated a major change in clinical status. Both improvement and deterioration may have important implications for future care, although the recommended medical regimen should be continued in most cases. Improvement may reflect recovery from a previous condition, such as viral myocarditis or hypothyroidism, or may occur after titration of recommended therapies for chronic HF. Thus, it is appropriate to obtain a repeat EF after some period of optimal medical therapy, typically 4 to 6 months, to decide about the implantation of an implantable cardioverter-defibrillator (ICD). Deterioration may reflect gradual disease progression or a new event, such as recurrent
MI. Routine assessment of EF at frequent, regular, or arbitrary intervals is not recommended.

There has been no established role for periodic invasive or noninvasive hemodynamic measurements in the management of HF. Most drugs used for the treatment of HF are prescribed on the basis of their ability to improve symptoms or survival rather than their effect on hemodynamic variables. Moreover, the initial and target doses of these drugs are selected on the basis of experience in controlled trials and are not based on the changes they may produce in cardiac output or pulmonary wedge pressure. Nevertheless, invasive hemodynamic measurements may assist in the determination of volume status and in distinguishing HF from other disorders that may cause circulatory instability, such as pulmonary diseases and sepsis. Measurements of cardiac output and pulmonary wedge pressure through a pulmonary artery catheter have also been used in patients with refractory HF to assess pulmonary vascular resistance, a determinant of eligibility for heart transplantation. Cardiac output can also be measured by noninvasive methods.

3.2.4. Assessment of Prognosis (UPDATED)

Although both healthcare providers and patients may be interested in defining the prognosis of an individual patient with HF, the likelihood of survival can be determined reliably only in populations and not in individuals. However, some attempts of prognostication in HF may provide better information for patients and their families to help them appropriately plan for their futures. It also identifies patients in whom cardiac transplantation or mechanical device therapy should be considered.

Multivariate analysis of clinical variables has helped to identify the most significant predictors of survival, and prognostic models have been developed and validated (66). Decreasing LVEF, worsening NYHA functional status, degree of hyponatremia, decreasing peak exercise oxygen uptake, decreasing hematocrit, widened QRS on 12-lead electrocardiogram, chronic hypotension, resting tachycardia, renal insufficiency, intolerance to conventional therapy, and refractory volume overload are all generally recognized key prognostic parameters, although the actual prognostic models incorporating them are not widely used in clinical practice (66,67). Although elevated circulating levels of neurohormonal factors have also been associated with high mortality rates, the routine assessment of neurohormones such as norepinephrine or endothelin is neither feasible nor helpful in clinical management. Likewise, elevated BNP (or NT-proBNP) levels predict higher risk of HF and other events after MI, whereas marked elevation in BNP levels during hospitalization for HF may predict rehospitalization and death. Nonetheless, the BNP measurement has not been clearly shown to supplement careful clinical assessment for management.

Because treatment of HF has improved over the past 10 years, the older prognostic models need to be revalidated (68), and newer prognostic models may have to be developed. Outcomes have been improved for most high-risk patients, which has resulted in a shift in the selection process for patients referred for heart transplantation (68). Routine use of ambulatory electrocardiographic monitoring, T-wave alternans analysis, heart rate variability measurement, and signal-averaged electrocardiography have not been shown to provide incremental value in assessing overall prognosis, although ambulatory electrocardiographic monitoring can be useful in decision making regarding placement of ICDs (69).

4. Therapy

4.1. Patients at High Risk for Developing Heart Failure (Stage A)

Recommendations

CLASS I

1. In patients at high risk for developing HF, systolic and diastolic hypertension should be controlled in accordance with contemporary guidelines. (Level of Evidence: A)

2. In patients at high risk for developing HF, lipid disorders should be treated in accordance with contemporary guidelines. (Level of Evidence: A)

3. For patients with diabetes mellitus (who are all at high risk for developing HF), blood sugar should be controlled in accordance with contemporary guidelines. (Level of Evidence: C)

4. Patients at high risk for developing HF should be counseled to avoid behaviors that may increase the risk of HF (e.g., smoking, excessive alcohol consumption, and illicit drug use). (Level of Evidence: C)

5. Ventricular rate should be controlled or sinus rhythm restored in patients with supraventricular tachyarrhythmias who are at high risk for developing HF. (Level of Evidence: B)

6. Thyroid disorders should be treated in accordance with contemporary guidelines in patients at high risk for developing HF. (Level of Evidence: C)

7. Healthcare providers should perform periodic evaluation for signs and symptoms of HF in patients at high risk for developing HF. (Level of Evidence: C)

8. In patients at high risk for developing HF who have known atherosclerotic vascular disease, healthcare providers should follow current guidelines for secondary prevention. (Level of Evidence: C)

9. Healthcare providers should perform a noninvasive evaluation of LV function (i.e., LVEF) in patients with a strong family history of cardiomyopathy or in those receiving cardiotoxic interventions. (Level of Evidence: C)

CLASS IIa

1. Angiotensin converting enzyme inhibitors can be useful to prevent HF in patients at high risk for developing HF who have a history of atherosclerotic vascular disease, diabetes mellitus, or hypertension with associated cardiovascular risk factors. (Level of Evidence: A)

2. Angiotensin II receptor blockers can be useful to prevent HF in patients at high risk for developing HF who have a history of atherosclerotic vascular disease, diabetes mellitus, or hypertension with associated cardiovascular risk factors. (Level of Evidence: A)
Table 3. Cardiovascular Medications Useful for Treatment of Various Stages* of Heart Failure

<table>
<thead>
<tr>
<th>Drug</th>
<th>Stage A</th>
<th>Stage B</th>
<th>Stage C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE Inhibitors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benazepril</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Captopril</td>
<td>H, DN</td>
<td>Post MI</td>
<td>HF</td>
</tr>
<tr>
<td>Enalapril</td>
<td>H, DN</td>
<td>HF</td>
<td>HF</td>
</tr>
<tr>
<td>Fosinopril</td>
<td>H</td>
<td>—</td>
<td>HF</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>H, DN</td>
<td>Post MI</td>
<td>HF</td>
</tr>
<tr>
<td>Moexipril</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Perindopril</td>
<td>H, CV Risk</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Quinapril</td>
<td>H</td>
<td>—</td>
<td>HF</td>
</tr>
<tr>
<td>Ramipril</td>
<td>H, CV Risk</td>
<td>Post MI</td>
<td>Post MI</td>
</tr>
<tr>
<td>Trandolapril</td>
<td>H</td>
<td>Post MI</td>
<td>Post MI</td>
</tr>
<tr>
<td>Angiotensin Receptor Blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candesartan</td>
<td>H</td>
<td>—</td>
<td>HF</td>
</tr>
<tr>
<td>Eprosartan</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Irrbesartan</td>
<td>H, DN</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Losartan</td>
<td>H, DN</td>
<td>CV Risk</td>
<td>—</td>
</tr>
<tr>
<td>Olmesartan</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Telmisartan</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Valsartan</td>
<td>H, DN</td>
<td>Post MI</td>
<td>Post MI, HF</td>
</tr>
<tr>
<td>Aldosterone Blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eplerenone</td>
<td>H</td>
<td>Post MI</td>
<td>Post MI</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>H</td>
<td>—</td>
<td>HF</td>
</tr>
<tr>
<td>Beta Blockers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acebutolol</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Atenolol</td>
<td>H</td>
<td>Post MI</td>
<td>—</td>
</tr>
<tr>
<td>Betaxolol</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>H</td>
<td>—</td>
<td>HF</td>
</tr>
<tr>
<td>Carteolol</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>H</td>
<td>Post MI</td>
<td>HF, Post MI</td>
</tr>
<tr>
<td>Labetalol</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Metoprolol succinate</td>
<td>H</td>
<td>—</td>
<td>HF</td>
</tr>
<tr>
<td>Metoprolol tartrate</td>
<td>H</td>
<td>Post MI</td>
<td>—</td>
</tr>
<tr>
<td>Nadolol</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Penbutolol</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pindolol</td>
<td>H</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Propranolol</td>
<td>H</td>
<td>Post MI</td>
<td>—</td>
</tr>
<tr>
<td>Timolol</td>
<td>H</td>
<td>Post MI</td>
<td>—</td>
</tr>
<tr>
<td>Digoxin</td>
<td>—</td>
<td>—</td>
<td>HF</td>
</tr>
</tbody>
</table>

*See Figure 1 for explanation of stages of heart failure.

Asymptomatic CV Risk indicates reduction in future cardiovascular events; DN, diabetic nephropathy; H, hypertension; HF, heart failure; LVSD, asymptomatic left ventricular systolic dysfunction; and Post MI, reduction in heart failure or other cardiac events following myocardial infarction.

CLASS III

1. Routine use of nutritional supplements solely to prevent the development of structural heart disease should not be recommended for patients at high risk for developing HF. (Level of Evidence: C)

Table 3 describes cardiovascular medications useful for treatment of various stages of HF. Many conditions or behaviors that are associated with an increased risk of structural heart disease can be identified before patients show any evidence of structural abnormalities. Because early modification of many of these factors can reduce the risk of HF, the recommendation of appropriate medical interventions to patients with these risk factors provides the earliest opportunity to reduce the impact of HF on public and individual health.

4.1.1. Control of Risk

4.1.1.1. TREATMENT OF HYPERTENSION

Elevated levels of diastolic and especially systolic blood pressure are major risk factors for the development of HF (70,71), and long-term treatment of both systolic and diastolic hypertension has been shown to reduce the risk of HF (72–74). A number of large, controlled studies have quite uniformly demonstrated that optimal blood pressure control decreases the risk of new HF by approximately 50% (75). Because approximately one fourth of the American population is hypertensive, and the lifetime risk of developing hypertension in the United States exceeds 75% (76), strategies to control hypertension are certainly a vital part of any effort to prevent HF. The subsequent structural abnormalities that occur in patients with hypertension, including LVH or MI (e.g., Stage B HF), portend an even higher number of adverse cardiovascular outcomes. Left ventricular hypertrophy is an independent cardiovascular risk factor that is as potent as age or systolic blood pressure in predicting MI, stroke, sudden death, or HF (77). In the Framingham Heart Study, hypertension accounted for 39% of HF cases in men and 59% in women (70). In addition, the benefits of treating hypertension in patients who have had a prior MI (Stage B) are even more dramatic, with an 81% reduction in the incidence of HF (73).

Healthcare providers should lower both systolic and diastolic blood pressure in accordance with the recommendations provided in published guidelines, including the most recently published report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (78); target levels of blood pressure are lower in patients with associated major cardiovascular risk factors, especially those with diabetes mellitus (79,80). When an antihypertensive regimen is devised, optimal control of blood pressure should remain the primary goal, with the choice of drugs determined by the concomitant medical problems (e.g., coronary artery disease, diabetes, or renal disease). Diuretic-based antihypertensive therapy has repeatedly been shown to prevent HF in a wide range of target populations (81). ACE inhibitors (ACEIs) and beta-blockers are also effective in the prevention of HF (78), whereas calcium antagonists and alpha-blockers are less effective in preventing HF syndrome (82). However, ACEIs and beta blockers, as single therapies, are not superior to other antihypertensive drug classes in the reduction of all cardiovascular outcomes.

Nevertheless, among patients with diabetes or other cardiovascular complications (83,84), ACEIs have been...
most notable with respect to a reduction in the onset of HF and new-onset diabetes. Likewise, compared with placebo, the ARBs losartan (85) and irbesartan (86) significantly reduced the incidence of HF in patients with type 2 diabetes mellitus and nephropathy. Ultimately, an appropriate anti-hypertensive regimen frequently consists of several drugs used in combination. Although prevention of HF is the focus of these guidelines, overall cardiovascular preventative strategies have also been the subject of published guidelines (87).

4.1.1.2 TREATMENT OF DIABETES

Obesity and insulin resistance are important risk factors for the development of HF (88,89). The presence of clinical diabetes mellitus markedly increases the likelihood of HF in patients without structural heart disease (90) and adversely affects the outcomes of patients with established HF (91,92). In a study of patients with type 2 diabetes mellitus more than 50 years of age who had urinary albumin greater than 20 mg per liter, 4% of patients developed HF over the study period, of whom 36% died (93). The occurrence of HF represents a major and adverse prognostic turn in a diabetic patient’s life. There is a differential gender effect associated with this risk; diabetes mellitus only modestly increases the risk of HF for men, but it increases the relative risk of HF more than 3-fold among women (70). Healthcare providers should make every effort to control hyperglycemia, although such control has not yet been shown to reduce the subsequent risk of HF. In addition, ACEIs or ARBs can prevent the development of end-organ disease and the occurrence of clinical events in diabetic patients, even in those who do not have hypertension (83,94). Long-term treatment with several ACEIs or ARBs has been shown to decrease the risk of renal disease in diabetic patients (95,96), and prolonged therapy with the ACEI ramipril has been shown to lower the likelihood of cardiovascular death, MI, and HF (83). Likewise, the use of ARBs in patients with diabetes mellitus and hypertension or LVH has been shown to reduce the incidence of first hospitalization for HF, in addition to having other beneficial effects on renal function (85,86,97).

4.1.1.3 MANAGEMENT OF THE METABOLIC SYNDROME

The clustering of cardiovascular risk factors in individual patients, termed the metabolic syndrome or syndrome X, includes any 3 of the following criteria: abdominal adiposity, hypertriglyceridemia, low high-density lipoprotein, hypertension, and fasting hyperglycemia. It is estimated that the prevalence of the metabolic syndrome in the United States exceeds 20% of individuals who are at least 20 years of age and 40% of the population over 40 years of age (98). The major adverse consequence of the metabolic syndrome is cardiovascular disease in general and may include an increased incidence of new HF (99). As noted previously, the appropriate treatment of hypertension, diabetes mellitus, and dyslipidemia (100) as they occur in isolation can significantly reduce the development of HF. A number of trials are currently in progress to determine the most effective intervention for patients with the metabolic syndrome.

4.1.1.4 MANAGEMENT OF ATHEROSCLEROTIC DISEASE

Patients with known atherosclerotic disease (e.g., of the coronary, cerebral, or peripheral blood vessels) are likely to develop HF, and healthcare providers should seek to control vascular risk factors in such patients according to recommended guidelines (87). In one large-scale trial, long-term treatment with an ACEI decreased the risk of the primary endpoint of cardiovascular death, MI, and stroke in patients with established vascular disease who were without evidence of HF or reduced LVEF at the time of randomization but the incidence of new HF was not a primary or secondary endpoint, although it was improved (83). Among patients with established coronary artery disease and no HF, another ACEI significantly reduced incidence of death, MI, or cardiac arrest, but again the incidence of new HF was neither a primary nor a secondary endpoint (84). A more recent large trial of ACEI versus placebo failed to show a reduction in the primary composite endpoint, although a post hoc analysis did show some reduction in HF hospitalization (101). The committee, in reviewing the accruing data, decided to change the level of recommendation for the use of ACEI for Stage A patients from Class I to Class IIa in this document. Treatment of hyperlipidemia (in accordance with published guidelines) has been shown to reduce the likelihood of death and of HF in patients with a history of MI (100,102–104).

4.1.1.5 CONTROL OF CONDITIONS THAT MAY CAUSE CARDIAC INJURY

Many therapeutic and recreational agents can exert important cardiotoxic effects, and patients should be strongly advised about the hazards of smoking, as well as the use of alcohol, cocaine, amphetamines, and other illicit drugs. Several epidemiological studies have revealed no correlation between the amount of alcohol ingested and the subsequent development of HF; nevertheless, the writing committee strongly believed that any patient with a history of alcohol abuse or with current substantial routine alcohol consumption and new-onset HF without other obvious cause should be counseled to become abstinent. Many HF programs limit alcoholic beverage consumption to no more than 1 alcoholic beverage serving daily for all patients with LV dysfunction, regardless of cause (105,106). Several interventions used in the treatment of cancer can injure the heart and lead to the development of HF, even in patients with no other cardiovascular risk factors. Such treatments include ionizing radiation that involves the mediastinum (107) and chemotherapy agents such as anthracyclines, immunotherapy such as trastuzumab, or high-dose cyclophosphamide (108–110). Patients who take trastuzumab in combination with anthracyclines are at particular risk of HF. Heart failure may occur years after initial exposure to anthracyclines or mediastinal radiotherapy. Use of ephedra, formerly a common ingredient in over-the-counter weight loss preparations, may contribute to the development of HF as well (111).
4.1.1.6. OTHER MEASURES
There is no direct evidence that control of dietary sodium or participation in regular exercise can prevent the development of HF; however, in patients with hypertension or other vascular disease, these efforts may have other health benefits and may enhance a general sense of well-being. There is also no evidence that routine use of nutritional supplements can prevent dysfunction of or injury to the heart.

4.1.2. Early Detection of Structural Abnormalities
Asymptomatic patients with ventricular dilatation and reduced LVEF carry substantially higher risk for subsequent morbidity and mortality than the general population. It would be desirable to construct cost-effective strategies to identify such patients in the interest of reducing their subsequent risk.

Limited information is available to support the cost-effectiveness of broad population screening. Brain natriuretic peptide levels represent a potential tool for this purpose (112). An analysis of the implications of elevated BNP has suggested that the screening of asymptomatic people over the age of 60 years with this blood test could yield cost-effective improvement in clinical outcomes across the population (113). Certain patients are appropriate targets for more aggressive screening on the basis of characteristics that denote an increase in the risk for structural heart disease. Healthcare professionals should perform echocardiographic evaluation in selected patients without apparent structural heart disease who are at very high risk of a cardiomyopathy (e.g., those with a strong family history of cardiomyopathy or those receiving cardiotoxic interventions) (114,115). Routine periodic assessment of LV function in other patients is not recommended.

4.2. Patients With Cardiac Structural Abnormalities or Remodeling Who Have Not Developed Heart Failure Symptoms (Stage B)

Recommendations

CLASS I
1. All Class I recommendations for Stage A should apply to patients with cardiac structural abnormalities who have not developed HF. (Levels of Evidence: A, B, and C as appropriate)
2. Beta blockers and ACEIs should be used in all patients with a recent or remote history of MI regardless of EF or presence of HF (see Table 3). (Level of Evidence: A)
3. Beta blockers are indicated in all patients without a history of MI who have a reduced LVEF with no HF symptoms (see Table 3 and text). (Level of Evidence: C)
4. Angiotensin converting enzyme inhibitors should be used in patients with a reduced EF and no symptoms of HF, even if they have not experienced MI. (Level of Evidence: A)
5. An ARB should be administered to post-MI patients without HF who are intolerant of ACEIs and have a low LVEF. (Level of Evidence: B)
6. Patients who have not developed HF symptoms should be treated according to contemporary guidelines after an acute MI. (Level of Evidence: C)

CLASS IIa
1. Angiotensin converting enzyme inhibitors or ARBs can be beneficial in patients with hypertension and LVH and no symptoms of HF. (Level of Evidence: B)
2. Angiotensin II receptor blockers can be beneficial in patients with low EF and no symptoms of HF who are intolerant of ACEIs. (Level of Evidence: C)
3. Placement of an ICD is reasonable in patients with ischemic cardiomyopathy who are at least 40 days post-MI, have an LVEF of 30% or less, are NYHA functional class I on chronic optimal medical therapy, and have reasonable expectation of survival with a good functional status for more than 1 year. (Level of Evidence: B)

CLASS IIb
1. Placement of an ICD might be considered in patients without HF who have nonischemic cardiomyopathy and an LVEF less than or equal to 30% who are in NYHA functional class I with chronic optimal medical therapy and have a reasonable expectation of survival with good functional status for more than 1 year. (Level of Evidence: C)

CLASS III
1. Digoxin should not be used in patients with low EF, sinus rhythm, and no history of HF symptoms, because in this population, the risk of harm is not balanced by any known benefit. (Level of Evidence: C)
2. Use of nutritional supplements to treat structural heart disease or to prevent the development of symptoms of HF is not recommended. (Level of Evidence: C)
3. Calcium channel blockers with negative inotropic effects may be harmful in asymptomatic patients with low LVEF and no symptoms of HF after MI (see text in Stage C). (Level of Evidence: C)

Patients without HF symptoms but who have had an MI or who have evidence of LV remodeling are at considerable risk of developing HF (116,117). In such patients, the incidence of HF can be decreased by reducing the risk of additional injury and by retarding the evolution and progression of LV remodeling. Initial appropriate measures include those listed as Class I recommendations for patients in Stage A (also see Section 5).

As is the case with patients who have no structural heart disease, there is no evidence that the use of nutritional supplements can prevent the development of HF in patients with a recent or remote MI with or without LV remodeling. The aldosterone antagonist eplerenone has been shown to reduce morbidity and mortality in a population of patients with low EF and HF after MI that has already been treated.
with ACEIs and beta blockers (118,119). Other preventive measures have been addressed in related guidelines (120).

4.2.1. Prevention of Cardiovascular Events

4.2.1.1. Patients with an acute myocardial infarction

In patients who are experiencing an acute MI, the infusion of a fibrinolytic agent or the use of percutaneous coronary intervention can decrease the risk of developing HF (121), and these interventions can reduce the risk of death, especially in patients with a prior myocardial injury (122,123). Patients with an acute infarction also benefit from the administration of both a beta blocker and either an ACEI or ARB, which can decrease the risk of reinfarction or death when initiated within days after the ischemic event, especially in patients whose course is complicated by HF (124–130). Combined neurohormonal blockade (beta blocker and ACEI or ARB) produces additive benefits (131). For recommendations on the treatment of patients with MI, see the ACC/AHA Guidelines for the Management of Patients With ST-Elevation Myocardial Infarction (11).

4.2.1.2. Patients with a history of MI but normal left ventricular ejection fraction

Both hypertension and hyperlipidemia should be treated vigorously in patients with a history of MI, because the benefits of treating these coronary risk factors are particularly marked in patients with a prior ischemic event (72,73). Patients with a recent MI should also receive treatment with ACEIs and beta blockers (124,125,128,129,131), which have been shown to reduce the risk of death when initiated days or weeks after an ischemic cardiac event. Evidence from 2 large-scale studies indicates that prolonged therapy with an ACEI can also reduce the risk of a major cardiovascular event, even when treatment is initiated months or years after MI (83,84).

4.2.1.3. Patients with hypertension and left ventricular hypertrophy

See Section 4.1.1.1.

4.2.1.4. Patients with chronic reduction of left ventricular ejection fraction but no symptoms

Long-term treatment with an ACEI has been shown to delay the onset of HF symptoms and decrease the risk of death and hospitalization for HF in asymptomatic patients with reduced LVEF, whether due to a remote ischemic injury or to a nonischemic cardiomyopathy (117,132). Although a recent trial investigated patients with low EF and HF at the time of MI, there are no studies that specifically address use of ARBs in asymptomatic patients with reduced LVEF. Given results of studies in symptomatic patients with low EF, ARBs may be an appropriate alternative, particularly in patients who cannot tolerate an ACEI. Furthermore, although controlled clinical trials are lacking, the use of beta blockers in patients with a low EF and no symptoms (especially those with coronary artery disease) is also recommended (127,131). In such cases, the same beta blockers should be used that were employed in the large HF trials.

The use of ICD therapy in patients with chronic reduction of LVEF but no symptoms has been evaluated in one large trial including only patients with ischemic cardiomyopathy. The trials assessing ICD for primary prophylaxis in nonischemic cardiomyopathy have not included functional class I patients and the efficacy of ICDs in this population as a whole is unknown (133). The trial involving patients with ischemic cardiomyopathy included a subset of asymptomatic patients post-MI with LVEF 30% or less, and there was demonstrated benefit of ICD placement (MADIT-II) in that subset. The findings potentially apply to large numbers of patients, and the number needed to treat to have benefit would be great. The writing committee struggled with this issue since guidelines are meant to summarize current science and not take into account economic issues or the societal impact of making a recommendation. However, the committee recognizes that economic impact and societal issues will clearly modulate how these recommendations are implemented.

In contrast, there are no data to recommend the use of digoxin in patients with asymptomatic reduction of LVEF, except in those with atrial fibrillation. Because the only reason to treat such patients is to prevent the progression of HF, and because digoxin has a minimal effect on disease progression in symptomatic patients (134), it is unlikely that the drug would be beneficial in those with no symptoms. Likewise, there are no data to recommend the routine use of calcium channel blockers in patients with asymptomatic reduction of LVEF, but they have not been shown to have adverse effects and may be helpful for comitant conditions such as hypertension. However, the use of calcium channel blockers with negative inotropic effects is not recommended in asymptomatic patients with EF less than 40% after MI (135).

Healthcare providers should pay particular attention to patients whose cardiomyopathy is associated with a rapid arrhythmia of supraventricular origin (e.g., atrial flutter or atrial fibrillation). Although healthcare providers frequently consider such tachycardias to be the result of an impairment of ventricular function, these rhythm disorders may lead to or exacerbate the development of a cardiomyopathy (136,137). Therefore, in patients with a reduced LVEF, every effort should be made to control the ventricular response to these tachyarrhythmias or to restore sinus rhythm (see Section 5, Treatment of Special Populations).

4.2.1.5. Patients with severe valvular disease but no symptoms

Valve replacement or repair surgery should be considered for patients with severe aortic or mitral valve stenosis or regurgitation, even when ventricular function is impaired (138–141). Long-term treatment with a systemic vasodilator drug may be considered for those with severe aortic regurgitation who are deemed to be poor candidates for surgery. Several studies (142,143) have suggested that pro-
longed therapy with hydralazine and nifedipine in patients with severe aortic regurgitation and preserved LV function might act to minimize structural changes in the ventricle and thereby possibly delay the need for surgical intervention; however, these drugs are often poorly tolerated in this setting, and no trial has shown that these vasodilators can reduce the risk of HF or death (see ACC/AHA Guidelines for the Management of Patients With Valvular Heart Disease [138]).

There are no long-term studies of vasodilator therapy in patients with severe asymptomatic mitral regurgitation.

4.2.2. Early Detection of Heart Failure

As noted, the symptoms and signs of HF are often difficult to identify because they are frequently confused with other disorders or are attributed to aging, obesity, or lack of conditioning. Limitations of exercise tolerance can occur so gradually that patients may adapt their lifestyles (consciously or subconsciously) to minimize symptoms and thus fail to report them to healthcare providers. Hence, patients at risk should be advised to inform their healthcare providers about limitations of exercise tolerance or unexplained fatigue, and healthcare providers should intensify their vigilance for the signs and symptoms of HF in such individuals.

4.3. Patients With Current or Prior Symptoms of HF (Stage C)

4.3.1. Patients With Reduced Left Ventricular Ejection Fraction (UPDATED)

Changes in this section focused on 3 areas: recommendations about electrical device therapy (e.g., cardiac resynchronization therapy [CRT] and ICDs), the use of a fixed dose combination of hydralazine and isosorbide dinitrate in self-identified African Americans, and the management of atrial fibrillation in patients with HF. The previous version of the guidelines had a number of possibly confusing recommendations about selection of patients for ICD implantation. The writing group has tried to simplify the recommendations, and keep them concordant with the most recent guidelines covering the same issue (69,144). Updated trial information has led to the change in the recommendations about the use of hydralazine/isosorbide dinitrate and about the management of atrial fibrillation (Table 3).

Recommendations

CLASS I

1. Measures listed as Class I recommendations for patients in stages A and B are also appropriate for patients in Stage C. (Levels of Evidence: A, B, and C as appropriate)

2. Diuretics and salt restriction are indicated in patients with current or prior symptoms of HF and reduced LVEF who have evidence of fluid retention (see Table 4). (Level of Evidence: C)

3. Angiotensin-converting enzyme inhibitors are recommended for all patients with current or prior symptoms of HF and reduced LVEF, unless contraindicated (see Table 3) (145–157). (Level of Evidence: A)

4. Use of 1 of the 3 beta blockers proven to reduce mortality (i.e., bisoprolol, carvedilol, and sustained release metoprolol succinate) is recommended for all stable patients with current or prior symptoms of HF and reduced LVEF, unless contraindicated (see Table 3) (158–176). (Level of Evidence: A)

5. Angiotensin II receptor blockers (see Table 3) are recommended in patients with current or prior symptoms of HF and reduced LVEF who are ACEI-intolerant (see text for information regarding patients with angioedema) (130,177–186). (Level of Evidence: A)

Table 4. Oral Diuretics Recommended for Use in the Treatment of Chronic Heart Failure

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Daily Dose(s)</th>
<th>Maximum Total Daily Dose</th>
<th>Duration of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bumetanide</td>
<td>0.5 to 1.0 mg once or twice</td>
<td>10 mg</td>
<td>4 to 6 hours</td>
</tr>
<tr>
<td>Furosemide</td>
<td>20 to 40 mg once or twice</td>
<td>600 mg</td>
<td>6 to 8 hours</td>
</tr>
<tr>
<td>Torsemide</td>
<td>10 to 20 mg once</td>
<td>200 mg</td>
<td>12 to 16 hours</td>
</tr>
<tr>
<td>Thiazide Diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothiazide</td>
<td>250 to 500 mg once or twice</td>
<td>1000 mg</td>
<td>6 to 12 hours</td>
</tr>
<tr>
<td>Chlorothalidone</td>
<td>12.5 to 25 mg once</td>
<td>100 mg</td>
<td>24 to 72 hours</td>
</tr>
<tr>
<td>Hydrochlorothiazide</td>
<td>25 mg once or twice</td>
<td>200 mg</td>
<td>6 to 12 hours</td>
</tr>
<tr>
<td>Indapamide</td>
<td>2.5 mg once</td>
<td>5 mg</td>
<td>36 hours</td>
</tr>
<tr>
<td>Metolazone</td>
<td>2.5 mg once</td>
<td>20 mg</td>
<td>12 to 24 hours</td>
</tr>
<tr>
<td>Potassium-Sparing Diuretics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiloride</td>
<td>5 mg once</td>
<td>20 mg</td>
<td>24 hours</td>
</tr>
<tr>
<td>Spironolactone</td>
<td>12.5 to 25 mg once</td>
<td>50 mg†</td>
<td>2 to 3 days</td>
</tr>
<tr>
<td>Triamterene</td>
<td>50 to 75 mg twice</td>
<td>200 mg</td>
<td>7 to 9 hours</td>
</tr>
<tr>
<td>Sequential Nephron Blockade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolazone</td>
<td>2.5 to 10 mg once plus loop diuretic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochlorothiazide</td>
<td>25 to 100 mg once or twice plus loop diuretic</td>
<td>250 to 500 mg once or twice plus loop diuretic</td>
<td></td>
</tr>
<tr>
<td>Chlorothiazide (IV)</td>
<td>500 to 1000 mg once plus loop diuretic</td>
<td>500 mg plus loop diuretic</td>
<td></td>
</tr>
</tbody>
</table>

*Eplerenone, although also a diuretic, is primarily used in chronic heart failure as a suppressor of the rennin-angiotensin-aldosterone system. †Higher doses may occasionally be used with close monitoring.

IV indicates intravenous; and mg, milligrams.
6. Drugs known to adversely affect the clinical status of patients with current or prior symptoms of HF and reduced LVEF should be avoided or withdrawn whenever possible (e.g., nonsteroidal anti-inflammatory drugs, most antiarrhythmic drugs, and most calcium channel blocking drugs; see text) (187–193). (Level of Evidence: B)

7. Exercise training is beneficial as an adjunctive approach to improve clinical status in ambulatory patients with current or prior symptoms of HF and reduced LVEF (193a–193d). (Level of Evidence: B)

8. An implantable cardioverter-defibrillator is recommended as secondary prevention to prolong survival in patients with current or prior symptoms of HF and reduced LVEF who have a history of cardiac arrest, ventricular fibrillation, or hemodynamically destabilizing ventricular tachycardia (194–196). (Level of Evidence: A)

9. Implantable cardioverter-defibrillator therapy is recommended for primary prevention of sudden cardiac death to reduce total mortality in patients with non-ischemic dilated cardiomyopathy or ischemic heart disease at least 40 days post-MI, a LVEF less than or equal to 35%, and NYHA functional class II or III symptoms while receiving chronic optimal medical therapy, and who have reasonable expectation of survival with a good functional status for more than 1 year (144,196–202). (Level of Evidence: A)

10. Patients with LVEF of less than or equal to 35%, sinus rhythm, and NYHA functional class III ambulatory class IV symptoms despite recommended optimal medical therapy and who have cardiac dyssynchrony, which is currently defined as a QRS duration greater than or equal to 0.12 seconds, should receive cardiac resynchronization therapy, with or without an ICD, unless contraindicated (203–218). (Level of Evidence: A)

11. Addition of an aldosterone antagonist is recommended in selected patients with moderately severe to severe symptoms of HF and reduced LVEF who can be carefully monitored for preserved renal function and normal potassium concentration. Creatinine should be 2.5 mg per dL or less in men or 2.0 mg per dL or less in women and potassium should be less than 5.0 mEq per liter. Under circumstances where monitoring for hyperkalemia or renal dysfunction is not anticipated to be feasible, the risks may outweigh the benefits of aldosterone antagonists (219–221). (Level of Evidence: B)

12. The combination of hydralazine and nitrates is recommended to improve outcomes for patients self-described as African-Americans, with moderate-severe symptoms on optimal therapy with ACEIs, beta blockers, and diuretics (222,223). (Level of Evidence: B)

CLASS IIa

1. It is reasonable to treat patients with atrial fibrillation and HF with a strategy to maintain sinus rhythm or with a strategy to control ventricular rate alone (224–228). (Level of Evidence: A)

2. Maximal exercise testing with or without measurement of respiratory gas exchange is reasonable to facilitate prescription of an appropriate exercise program for patients presenting with HF. (Level of Evidence: C)

3. Angiotensin II receptor blockers are reasonable to use as alternatives to ACEIs as first-line therapy for patients with mild to moderate HF and reduced LVEF, especially for patients already taking ARBs for other indications (130,177–185). (Level of Evidence: A)

4. Digitals can be beneficial in patients with current or prior symptoms of HF and reduced LVEF to decrease hospitalizations for HF (134,229–235). (Level of Evidence: B)

5. The addition of a combination of hydralazine and a nitrate is reasonable for patients with reduced LVEF who are already taking an ACEI and beta blocker for symptomatic HF and who have persistent symptoms (222,236). (Level of Evidence: B)

6. For patients who have LVEF less than or equal to 35%, a QRS duration of greater than or equal to 0.12 seconds, and atrial fibrillation (AF), CRT with or without an ICD is reasonable for the treatment of NYHA functional class III or ambulatory class IV heart failure symptoms on optimal recommended medical therapy (2, 237). (Level of Evidence: B)

7. For patients with LVEF of less than or equal to 35% with NYHA functional class III or ambulatory class IV symptoms who are receiving optimal recommended medical therapy and who have frequent dependence on ventricular pacing, CRT is reasonable (2). (Level of Evidence: C)

CLASS IIb

1. A combination of hydralazine and a nitrate might be reasonable in patients with current or prior symptoms of HF and reduced LVEF who cannot be given an ACEI or ARB because of drug intolerance, hypotension, or renal insufficiency (222,238,239). (Level of Evidence: C)

2. The addition of an ARB may be considered in persistently symptomatic patients with reduced LVEF who are already being treated with conventional therapy (130,177–185). (Level of Evidence: B)

CLASS III

1. Routine combined use of an ACEI, ARB, and aldosterone antagonist is not recommended for patients with current or prior symptoms of HF and reduced LVEF. (Level of Evidence: C)

2. Calcium channel blocking drugs are not indicated as routine treatment for HF in patients with current or prior symptoms of HF and reduced LVEF (135,240–242). (Level of Evidence: A)

3. Long-term use of an infusion of a positive inotropic drug may be harmful and is not recommended for patients with current or prior symptoms of HF and reduced LVEF, except as palliation for patients with end-stage disease who cannot be stabilized with standard medical treatment (see recommendations for Stage D). (Level of Evidence: C)

4. Use of nutritional supplements as treatment for HF is not indicated in patients with current or prior symptoms of HF and reduced LVEF. (Level of Evidence: C)

5. Hormonal therapies other than to replete deficiencies are not recommended and may be harmful to patients with current or prior symptoms of HF and reduced LVEF. (Level of Evidence: C)

4.3.1.1. GENERAL MEASURES (UPDATED)

Measures listed as Class I recommendations for patients in stage A or B are also appropriate for patients with current or prior symptoms of HF (also see Section 5, Treatment of Special Populations). In addition, moderate sodium restriction, along with daily measurement of weight, is indicated to permit effective use of lower and safer doses of diuretic...
drugs, even if overt sodium retention can be controlled by the use of diuretics. Immunization with influenza and pneumococcal vaccines may reduce the risk of a respiratory infection. Although most patients should not participate in heavy labor or exhaustive sports, physical activity should be encouraged (except during periods of acute exacerbation of the signs and symptoms of HF, or in patients with suspected myocarditis), because restriction of activity promotes physical deconditioning, which may adversely affect clinical status and contribute to the exercise intolerance of patients with HF (243–246).

Three classes of drugs can exacerbate the syndrome of HF and should be avoided in most patients:

1) Antiarrhythmic agents (247) can exert important cardiodepressant and proarrhythmic effects. Of available agents, only amiodarone and dofetilide (248) have been shown not to adversely affect survival.

2) Calcium channel blockers can lead to worsening HF and have been associated with an increased risk of cardiovascular events (249). Of available calcium channel blockers, only the vasoselective ones have been shown not to adversely affect survival (240,250).

3) Nonsteroidal anti-inflammatory drugs can cause sodium retention and peripheral vasoconstriction and can attenuate the efficacy and enhance the toxicity of diuretics and ACEIs (187–190). A discussion of the use of aspirin as a unique agent is found later in this section (see Section 4.3.1.2.2.1, Angiotensin Converting Enzyme Inhibitors in the Management of Heart Failure).

Patients with HF should be monitored carefully for changes in serum potassium, and every effort should be made to prevent the occurrence of either hypokalemia or hyperkalemia, both of which may adversely affect cardiac excitability and conduction and may lead to sudden death (251). Activation of both the sympathetic nervous system and renin-angiotensin system can lead to hypokalemia (252,253), and most drugs used for the treatment of HF can alter serum potassium (254). Even modest decreases in serum potassium can increase the risks of using digitalis and antiarrhythmic drugs (251,255), and even modest increases in serum potassium may prevent the use of treatments known to prolong life (256). Hence, many experts believe that serum potassium concentrations should be targeted in the 4.0 to 5.0 mEq per liter range. In some patients, correction of potassium deficits may require supplementation of magnesium and potassium (257). In others (particularly those taking ACEIs alone or in combination with aldosterone antagonists), the routine prescription of potassium salts may be unnecessary and potentially deleterious.

Of the general measures that should be used in patients with HF, possibly the most effective yet least used is close observation and follow-up. Nonadherence with diet and medications can rapidly and profoundly affect the clinical status of patients, and increases in body weight and minor changes in symptoms commonly precede by several days the occurrence of major clinical episodes that require emergency care or hospitalization. Patient education and close supervision, which includes surveillance by the patient and his or her family, can reduce the likelihood of nonadherence and lead to the detection of changes in body weight or clinical status early enough to allow the patient or a healthcare provider an opportunity to institute treatments that can prevent clinical deterioration. Supervision need not be performed by a physician and may ideally be accomplished by a nurse or physician's assistant with special training in the care of patients with HF. Such an approach has been reported to have significant clinical benefits (258–261).

Recommendations Concerning Aldosterone Antagonists. The addition of low-dose aldosterone antagonists is recommended in carefully selected patients with moderately severe or severe HF symptoms and recent decompensation or with LV dysfunction early after MI. These recommendations are based on the strong data demonstrating reduced death and rehospitalization in 2 clinical trial populations (118,256). The entry criteria for these trials describe a broader population than was actually enrolled, such that the favorable efficacy/toxicity ratio may not be as applicable to patients at the margins of trial eligibility. For both of these major trials, patients were excluded for a serum creatinine level in excess of 2.5 mg per dL, but few patients were actually enrolled with serum creatinine levels over 1.5 mg per dL. In the trial of patients after MI, there was a significant interaction between serum creatinine and benefit of eplerenone. The average serum creatinine of enrolled patients was 1.1 mg per dL, above which there was no demonstrable benefit for survival.

To minimize the risk of life-threatening hyperkalemia in patients with low LVEF and symptoms of HF, patients should have initial serum creatinine less than 2.0 to 2.5 mg per dL without recent worsening and serum potassium less than 5.0 mEq per dL without a history of severe hyperkalemia. In view of the consistency of evidence for patients with low LVEF early after MI and patients with recent decompensation and severe symptoms, it may be reasonable to consider addition of aldosterone antagonists to loop diuretics for some patients with mild to moderate symptoms of HF; however, the writing committee strongly believes that there are insufficient data or experience to provide a specific or strong recommendation. Because the safety and efficacy of aldosterone antagonist therapy have not been shown in the absence of loop diuretic therapy, it is not currently recommended that such therapy be given without other concomitant diuretic therapy in chronic HF. Although 17% of patients in the CHARM (Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity) add-on trial (186) were receiving spironolactone, the safety of the combination of ACEIs, ARBs, and aldosterone antagonists has not been explored adequately, and this combination cannot be recommended.
4.3.1.2. DRUGS RECOMMENDED FOR ROUTINE USE
Most patients with HF should be routinely managed with a combination of 3 types of drugs: a diuretic, an ACEI or an ARB, and a beta blocker (262). The value of these drugs has been established by the results of numerous large-scale clinical trials, and the evidence supporting a central role for their use is compelling and persuasive. Patients with evidence of fluid retention should take a diuretic until a euvoletic state is achieved, and diuretic therapy should be continued to prevent the recurrence of fluid retention. Even if the patient has responded favorably to the diuretic, treatment with both an ACEI and a beta blocker should be initiated and maintained in patients who can tolerate them because they have been shown to favorably influence the long-term prognosis of HF. Therapy with digoxin as a fourth agent may be initiated at any time to reduce symptoms, prevent hospitalization, control rhythm, and enhance exercise tolerance.

4.3.1.2.1. DIURETICS. Diuretics interfere with the sodium retention of HF by inhibiting the reabsorption of sodium or chloride at specific sites in the renal tubules. Bumetanide, furosemide, and torsemide act at the loop of Henle (thus, they are called loop diuretics), whereas thiazides, metolazone, and potassium-sparing agents (e.g., spironolactone) act in the distal portion of the tubule (263,264). These 2 classes of diuretics differ in their pharmacological actions. The loop diuretics increase sodium excretion up to 20% to 25% of the filtered load of sodium, enhance free water clearance, and maintain their efficacy unless renal function is severely impaired. In contrast, the thiazide diuretics increase the fractional excretion of sodium to only 5% to 10% of the filtered load, tend to decrease free water clearance, and lose their effectiveness in patients with impaired renal function (creatinine clearance less than 40 mL per min). Consequently, the loop diuretics have emerged as the preferred diuretic agents for use in most patients with HF; however, thiazide diuretics may be preferred in hypertensive HF patients with mild fluid retention because they confer more persistent antihypertensive effects.

Effect of Diuretics in the Management of HF. Controlled trials have demonstrated the ability of diuretic drugs to increase urinary sodium excretion and decrease physical signs of fluid retention in patients with HF (265,266). In these short-term studies, diuretic therapy has led to a reduction in jugular venous pressures, pulmonary congestion, peripheral edema, and body weight, all of which were observed within days of initiation of therapy. In intermediate-term studies, diuretics have been shown to improve cardiac function, symptoms, and exercise tolerance in patients with HF (267–269). There have been no long-term studies of diuretic therapy in HF, and thus, their effects on morbidity and mortality are not known.

When using diuretics in patients with HF, healthcare providers should keep several points in mind:

1) Diuretics produce symptomatic benefits more rapidly than any other drug for HF. They can relieve pulmonary and peripheral edema within hours or days, whereas the clinical effects of digitalis, ACEIs, or beta blockers may require weeks or months to become apparent (270,271).

2) Diuretics are the only drugs used for the treatment of HF that can adequately control the fluid retention of HF. Although both digitalis and low doses of ACEIs can enhance urinary sodium excretion (121,123), few patients with HF and a history of fluid retention can maintain sodium balance without the use of diuretic drugs. Attempts to substitute ACEIs for diuretics can lead to pulmonary and peripheral congestion (269).

3) Diuretics should not be used alone in the treatment of Stage C HF. Even when diuretics are successful in controlling symptoms and fluid retention, diuretics alone are unable to maintain the clinical stability of patients with HF for long periods of time (269). The risk of clinical decompensation can be reduced, however, when diuretics are combined with an ACEI and a beta blocker (229).

4) Appropriate use of diuretics is a key element in the success of other drugs used for the treatment of HF. The use of inappropriately low doses of diuretics will result in fluid retention, which can diminish the response to ACEIs and increase the risk of treatment with beta blockers (272).

Conversely, the use of inappropriately high doses of diuretics will lead to volume contraction, which can increase the risk of hypotension with ACEIs and vasodilators (272,273) and the risk of renal insufficiency with ACEIs and ARBs (274). Optimal use of diuretics is the cornerstone of any successful approach to the treatment of HF.

PRACTICAL USE OF DIURETIC THERAPY. Selection of patients. Diuretics should be prescribed to all patients who have evidence of, and to most patients with a prior history of, fluid retention. Diuretics should generally be combined with an ACEI and a beta blocker (229). Few patients with HF will be able to maintain dry weight without the use of diuretics.

PRACTICAL USE OF DIURETIC THERAPY. Initiation and maintenance. The most commonly used loop diuretic for the treatment of HF is furosemide, but some patients respond favorably to other agents in this category (such as torsemide) because of superior absorption and longer duration of action (275,276). In outpatients with HF, therapy is commonly initiated with low doses of a diuretic, and the dose is increased until urine output increases and weight decreases, generally by 0.5 to 1.0 kg daily. Further increases in the dose or frequency (i.e., twice-daily dosing) of diuretic administration may be required to maintain an active diuresis and sustain the loss of weight. The ultimate goal of diuretic treatment is to eliminate clinical evidence of fluid retention, such as jugular venous pressure elevation and peripheral edema. Diuretics are generally combined with moderate dietary sodium restriction (3 to 4 g daily).
If electrolyte imbalances are seen, these should be treated aggressively and the diuresis continued. If hypotension or azotemia is observed before the goals of treatment are achieved, the physician may elect to slow the rapidity of diuresis, but diuresis should nevertheless be maintained until fluid retention is eliminated, even if this strategy results in mild or moderate decreases in blood pressure or renal function, as long as the patient remains asymptomatic. Excessive concern about hypotension and azotemia can lead to the underutilization of diuretics and a state of refractory edema. Persistent volume overload not only contributes to the persistence of symptoms but may also limit the efficacy and compromise the safety of other drugs used for the treatment of HF (277).

Once fluid retention has resolved, treatment with the diuretic should be maintained to prevent the recurrence of volume overload. Patients are commonly prescribed a fixed dose of diuretic, but the dose of these drugs frequently may need adjustment. In many cases, this adjustment can be accomplished by having patients record their weight each day and making changes in their diuretic dosage if the weight increases or decreases beyond a specified range.

The response to a diuretic is dependent on the concentration of the drug and the time course of its entry into the urine (148,149). Patients with mild HF respond favorably to low doses because they absorb diuretics rapidly from the bowel and deliver these drugs rapidly to the renal tubules. However, as HF advances, the absorption of the drug may be delayed by bowel edema or intestinal hypoperfusion, and the delivery of the drug and the response to a given intratubular concentration may be impaired by a decline in renal perfusion and function (278–280). Consequently, the clinical progression of HF is characterized by the need for increasing doses of diuretics.

Patients may become unresponsive to high doses of diuretic drugs if they consume large amounts of dietary sodium, are taking agents that can block the effects of diuretics (e.g., nonsteroidal anti-inflammatory drugs, including cyclo-oxygenase-2 inhibitors) (188,189,281), or have a significant impairment of renal function or perfusion (275). Diuretic resistance can generally be overcome by the intravenous administration of diuretics (including the use of continuous infusions) (282), the use of 2 or more diuretics in combination (e.g., furosemide and metolazone) (283–286), or the use of diuretics together with drugs that increase renal blood flow (e.g., positive inotropic agents) (286).

PRACTICAL USE OF DIURETIC THERAPY. **Risks of treatment.** The principal adverse effects of diuretics include electrolyte and fluid depletion, as well as hypotension and azotemia. Diuretics may also cause rashes and hearing difficulties, but these are generally idiosyncratic or are seen with the use of very large doses, respectively.

Diuretics can cause the depletion of important cations (potassium and magnesium), which can predispose patients to serious cardiac arrhythmias, particularly in the presence of digitalis therapy (287). The risk of electrolyte depletion is markedly enhanced when 2 diuretics are used in combination. The loss of electrolytes is related to enhanced delivery of sodium to distal sites in the renal tubules and the exchange of sodium for other cations, a process that is potentiated by activation of the renin-angiotensin-aldosterone system (264). Potassium deficits can be corrected by the short-term use of potassium supplements or, if severe, by the addition of magnesium supplements (288). Concomitant administration of ACEIs alone or in combination with potassium-retaining agents (such as spironolactone) can prevent electrolyte depletion in most patients with HF who are taking a loop diuretic. When these drugs are prescribed, long-term oral potassium supplementation frequently is not needed and may be deleterious.

Excessive use of diuretics can decrease blood pressure and impair renal function and exercise tolerance (272–274,289), but hypotension and azotemia may also occur as a result of worsening HF, which may be exacerbated by attempts to reduce the dose of diuretics. If there are no signs of fluid retention, hypotension and azotemia are likely to be related to volume depletion and may resolve after a reduction in diuretic dose. The signs of fluid retention, hypotension and azotemia, are likely to reflect worsening HF and a decline in effective peripheral perfusion. This is an ominous clinical scenario and necessitates considering the measures discussed under Stage D HF. Tables 4 and 5 illustrate oral and intravenous diuretics recommended for use in the treatment of chronic HF.

4.3.1.2.2. Inhibitors of the Renin-Angiotensin-Aldosterone System

Inhibition of the renin-angiotensin-aldosterone system can take place at multiple sites: at the level of the enzyme that converts angiotensin I to angiotensin II (ACEIs), at the angiotensin receptor (ARBs), or at the receptor for aldosterone, which is under control of both the renin angiotensin system and other systemic and local...
influences (aldosterone antagonists). Angiotensin converting enzyme inhibitors are the best-studied class of agents in HF, with multiple mechanisms of benefit for both HF, coronary disease, and other atherosclerotic vascular disease, as well as diabetic nephropathy. During chronic therapy with ACEIs, the renin-angiotensin system demonstrates partial “escape” from inhibition with “normalization” of angiotensin levels, in part owing to alternative local pathways for production of angiotensin. This leaves the potential for benefit from additional therapy with ARBs and with the aldosterone antagonists.

4.3.1.2.2.1. Angiotensin Converting Enzyme Inhibitors in the Management of Heart Failure. It is not clear whether the effects of ACEIs can be explained solely by the suppression of angiotensin II production, because ACE inhibition not only interferes with the renin-angiotensin system but also enhances the action of kinins and augments kinin-mediated prostaglandin production (290–292). In experimental models of HF, ACEIs modify cardiac remodeling more favorably than ARBs (293–296), and this advantage of ACEIs is abolished by the coadministration of a kinin receptor blocker (293,295). Angiotensin converting enzyme inhibitors have been evaluated in more than 7000 patients with HF who participated in more than 30 placebo-controlled clinical trials (146). All of these trials enrolled patients with reduced LVEF (EF less than 35% to 40%) who were treated with diuretics, with or without digitalis. These trials recruited many types of patients, including women and the elderly, as well as patients with a wide range of causes and severity of LV dysfunction. However, patients with preserved systolic function, low blood pressure (less than 90 mm Hg systolic), or impaired renal function (serum creatinine greater than 2.5 mg per mL) were not recruited or represented a small proportion of patients who participated in these studies.

Analysis of this collective experience indicates that ACEIs can alleviate symptoms, improve clinical status, and enhance the overall sense of well-being of patients with HF (145,147–157). In addition, ACEIs can reduce the risk of death and the combined risk of death or hospitalization (145,147–157). These benefits of ACE inhibition were seen in these studies have clearly defined a dose that is effective in these studies have clearly defined a dose that is effective in modifying the natural history of the disease. Such information is generally lacking for ACEIs that have not been studied in HF or post-MI populations (captopril, enalapril, lisinopril, perindopril, ramipril, and trandolapril), because these studies have clearly defined a dose that is effective in modifying the natural history of the disease. Such information is generally lacking for ACEIs that have not been shown to be effective in large-scale studies.

PRACTICAL USE OF ACEIS. Initiation and maintenance. Although most of the evidence that supports an effect of ACEIs on the survival of patients with HF is derived from experience with enalapril, the available data suggest that there are no differences among available ACEIs in their effects on symptoms or survival (146). Although some have suggested that drugs in this class may differ in their ability to inhibit tissue ACE, no trial has shown that tissue ACE inhibiting agents are superior to other ACEIs in any clinical aspect of HF. Nevertheless, in selecting among ACEIs, it is recommended that preference be given to ACEIs that have been shown to reduce morbidity and mortality in clinical trials in HF or post-MI populations (captopril, enalapril, lisinopril, perindopril, ramipril, and trandolapril), because these studies have clearly defined a dose that is effective in modifying the natural history of the disease. Such information is generally lacking for ACEIs that have not been shown to be effective in large-scale studies.

Treatment with an ACEI should be initiated at low doses (see Table 5), followed by gradual increments in dose if lower doses have been well tolerated. Renal function and serum potassium should be assessed within 1 to 2 weeks of initiation of therapy and periodically thereafter, especially in patients with preexisting hypotension, hyponatremia, diabetes mellitus, or azotemia or in those taking potassium supplements. Because fluid retention can blunt the therapeutic effects and fluid depletion can potentiate the adverse effects of ACE (274,277), healthcare providers should ensure that patients are being given appropriate doses of diuretics before and during treatment with these drugs. Most patients (85% to 90%) with HF can tolerate short- and long-term therapy with these drugs (155–157).

What dose of an ACEI should physicians try to achieve in patients with HF? In controlled clinical trials that were...
designed to evaluate survival, the dose of the ACEI was not determined by a patient’s therapeutic response but was increased until a target dose was reached (193–195). However, these drugs are commonly prescribed in clinical practice at much lower doses that are similar to those recommended for initiation rather than maintenance of therapy. Which approach should be followed? In the controlled clinical trials of ACEIs, low or intermediate doses were commonly prescribed if higher doses could not be tolerated. In controlled trials with newer agents for HF, intermediate doses rather than high doses of ACEIs were generally used as background therapy. Higher doses of an ACEI were better than low doses in reducing the risk of hospitalization, but they showed similar effects on symptoms and mortality (298,299). Clinicians should attempt to use doses that have been shown to reduce the risk of cardiovascular events in clinical trials. If these target doses of an ACEI cannot be used or are poorly tolerated, intermediate doses should be used with the expectation that there are likely to be only small differences in efficacy between low and high doses. More importantly, clinicians should not delay the institution of beta blockers in patients because of a failure to reach target ACEI doses. Once the drug has been titrated to the appropriate dose, patients can generally be maintained on long-term therapy with an ACEI with little difficulty. Although symptoms may improve in some patients within the first 48 hours of therapy with an ACEI, the clinical responses to these drugs are generally delayed and may require several weeks, months, or more to become apparent (145,270). Even if symptoms do not improve, long-term treatment with an ACEI should be maintained to reduce the risk of death or hospitalization. Abrupt withdrawal of treatment with an ACEI can lead to clinical deterioration and should be avoided (300) in the absence of life-threatening complications (e.g., angioedema).

Every effort should be made to minimize the occurrence of sodium retention or depletion during long-term treatment with an ACEI, because changes in salt and water balance can exaggerate or attenuate the cardiovascular and renal effects of treatment (274,277). Fluid retention can minimize the symptomatic benefits of ACE inhibition, whereas fluid loss increases the risk of hypotension and azotemia. The use of an ACEI can also minimize or eliminate the need for long-term potassium supplementation. Nonsteroidal anti-inflammatory drugs can block the favorable effects and enhance the adverse effects of ACEIs in patients with HF and should be avoided (190,252).

Clinical experience in patients who are hemodynamically or clinically unstable suggests that the hypotensive effects of ACE inhibition may attenuate the natriuretic response to diuretics and antagonize the pressor response to intravenous vasoconstrictors (301,302). As a result, in such patients (particularly those who are responding poorly to diuretic drugs), it may be prudent to interrupt treatment with the ACEI temporarily until the clinical status of the patient stabilizes.

Retrospective analyses of large-scale clinical trials have suggested that aspirin might interfere with the benefits of ACE inhibition in patients with HF by inhibiting kinin-mediated prostaglandin synthesis. In short-term hemodynamic and maximal-exercise studies, aspirin can attenuate the hemodynamic actions of ACEIs in patients with HF (303,304), an effect not seen with nonaspirin antiplatelet agents (e.g., clopidogrel) (305).

In several multicenter trials, concomitant use of aspirin was associated with a diminution of the effect of ACEIs on survival and on cardiovascular morbidity (306,307). A recent comprehensive systematic overview of 22 060 patients from 6 long-term randomized trials of ACEIs reevaluated the issue of the potential detrimental effect of combining aspirin with ACEI therapy. When all of these trials were considered together, the effects of ACEIs were significantly beneficial in patients with and without aspirin therapy. The composite risk reduction was 20% for patients taking aspirin and 29% for those not taking aspirin, a difference that did not reach statistical significance (308). A second retrospective review subsequently also reported no adverse effect of concomitant aspirin use with ACEIs on long-term survival (309). Given these retrospective results, many physicians believe the data justify prescribing aspirin and ACEIs together when there is an indication for use of aspirin. However, these large overviews are subject to varying interpretation. Other physicians would consider not combining aspirin with an ACEI because there are no data to indicate that it can reduce the risk of ischemic events in patients with HF (310,311), or they might consider the use of an alternative antiplatelet agent such as clopidogrel, which does not interact with ACEIs and which may have superior effects in preventing ischemic events (312). However, clopidogrel does not have an indication for the primary prevention of ischemic events. There may be an important interaction between aspirin and ACEIs, but there is controversy regarding this point, and it requires further study.

PRACTICAL USE OF ACEIS. Risks of treatment. Most of the adverse reactions of ACEIs can be attributed to the 2 principal pharmacological actions of these drugs: those related to angiotensin suppression and those related to kinin potentiation. Other types of side effects may also occur (e.g., rash and taste disturbances).

Adverse effects related to angiotensin suppression.

1. HYPOTENSION

The most common adverse effects of ACE inhibition in patients with HF are hypotension and dizziness. Blood pressure declines without symptoms in nearly every patient treated with an ACEI, so hypotension is generally a concern only if it is accompanied by postural symptoms, worsening renal function, blurred vision, or syncope. Hypotension is seen most frequently during the first few days of initiation of increments in therapy, particularly in patients with hypovo-
Adverse effects related to kinin potentiation.

1. COUGH

Cough related to the use of ACEIs is the most common reason for the withdrawal of long-term treatment with these drugs (320); the frequency of cough is approximately 5% to 10% in white patients of European descent and rises to nearly 50% in Chinese patients (321). It is characteristically nonproductive, is accompanied by a persistent and annoying “tickle” in the back of the throat, usually appears within the first months of therapy, disappears within 1 to 2 weeks of discontinuing treatment, and recurs within days of rechallenge. Other causes of cough, especially pulmonary congestion, should always be considered, and the ACEI should be implicated only after these have been excluded. Demonstration that the cough disappears after drug withdrawal and recurs after rechallenge with another ACEI strongly suggests that ACE inhibition is the cause of the cough. In a number of studies of ACEI cough, it was found that this symptom did not recur with rechallenge and probably was a coincidental finding. Because of the long-term benefits of ACEIs, physicians should encourage patients to continue taking these drugs if the cough is not severe. Only if the cough proves to be persistent and troublesome should the physician consider withdrawal of the ACEI and the use of alternative medications (e.g., an ARB).

2. ANGIOEDEMA

Angioedema occurs in fewer than 1% of patients taking an ACEI but is more frequent in blacks. Because its occurrence may be life-threatening, the clinical suspicion of this reaction justifies subsequent avoidance of all ACEIs for the lifetime of the patient (320). Angiotensin converting enzyme inhibitors should not be initiated in any patient with a history of angioedema. Although ARBs may be considered as alternative therapy for patients who have developed angioedema while taking an ACEI, there are a number of patients who have also developed angioedema with ARBs and extreme caution is advised when substituting an ARB in a patient who has had angioedema associated with ACEI use (177,322–324).

4.3.1.2.2. Angiotensin Receptor Blockers. Agents that block these receptors were developed on the rationale that 1) angiotensin II production continues in the presence of ACE inhibition, driven through alternative enzyme pathways, and 2) interference with the renin-angiotensin system without inhibition of kininase would produce all of the benefits of ACEIs while minimizing the risk of their adverse reactions (325). However, it is now known that some of the benefits may be related to the accumulation of kinins (326) rather than to the suppression of angiotensin II formation, whereas some of the side effects of ACEIs in HF are related to the suppression of angiotensin II formation (293–295). Table 6 lists the inhibitors of the renin-angiotensin-aldosterone system and beta blockers that are commonly used for the treatment of patients with HF with low ejection fraction.

Several ARBs (e.g., candesartan, eprosartan, irbesartan, losartan, telmisartan, olmesartan, and valsartan) are available for clinical use. Experience with these drugs in controlled clinical trials of patients with HF is considerably less than that with ACEIs. Nevertheless, in several placebo-
Angiotensin receptor blockers are as likely to produce hypotension, worsening renal function, and hyperkalemia as ACEIs. Although angioedema is much less frequent with ARBs, there are cases of patients who developed angioedema to both ACEIs and later to ARBs (177). There is little information available about the addition of ARBs to therapy with both ACEIs and aldosterone antagonists, but risks of renal dysfunction and hyperkalemia would be further increased. Until further information is available, the routine combined use of all 3 inhibitors of the renin-angiotensin system cannot be recommended.

PRACTICAL USE OF ARBS. *Initiation and maintenance.* When used, angiotensin receptor antagonists should be initiated with the starting doses shown in Table 6. Many of the considerations with ARB are similar to those with initiation of an ACEI, as discussed above. Blood pressure (including postural blood pressure changes), renal function, and potassium should be reassessed within 1 to 2 weeks after initiation and followed closely after changes in dose. Patients with systolic blood pressure below 80 mm Hg, low serum sodium, diabetes mellitus, and impaired renal function merit particular surveillance during therapy with inhibitors of the renin angiotensin-aldosterone system. Titration is generally achieved by doubling doses. For stable patients, it is reasonable to add therapy with beta-blocking agents before full target doses of either ACEIs or ARBs are reached.

The risks of treatment with ARBs are those attributed to suppression of angiotensin stimulation, as discussed above for ACEIs. These risks of hypotension, renal dysfunction, and hyperkalemia are greater when combined with another inhibitor of this axis, such as ACEIs or aldosterone antagonists.

Table 6. Inhibitors of the Renin-Angiotensin-Aldosterone System and Beta Blockers Commonly Used for the Treatment of Patients With HF With Low Ejection Fraction

<table>
<thead>
<tr>
<th>Drug</th>
<th>Initial Daily Dose(s)</th>
<th>Maximum Doses(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE Inhibitors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captopril</td>
<td>6.25 mg 3 times</td>
<td>50 mg 3 times</td>
</tr>
<tr>
<td>Enalapril</td>
<td>2.5 mg twice</td>
<td>10 to 20 mg twice</td>
</tr>
<tr>
<td>Fosinopril</td>
<td>5 to 10 mg once</td>
<td>40 mg once</td>
</tr>
<tr>
<td>Lisinopril</td>
<td>2.5 to 5 mg once</td>
<td>20 to 40 mg once</td>
</tr>
<tr>
<td>Perindopril</td>
<td>2 mg once</td>
<td>8 to 16 mg once</td>
</tr>
<tr>
<td>Quinapril</td>
<td>5 mg twice</td>
<td>20 mg twice</td>
</tr>
<tr>
<td>Ramipril</td>
<td>1.25 to 2.5 mg once</td>
<td>10 mg once</td>
</tr>
<tr>
<td>Trandolapril</td>
<td>1 mg once</td>
<td>4 mg once</td>
</tr>
<tr>
<td>Angiotensin Receptor Blockers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candesartan</td>
<td>4 to 8 mg once</td>
<td>32 mg once</td>
</tr>
<tr>
<td>Losartan</td>
<td>25 to 50 mg once</td>
<td>50 to 100 mg once</td>
</tr>
<tr>
<td>Valsartan</td>
<td>20 to 40 mg twice</td>
<td>160 mg twice</td>
</tr>
<tr>
<td>Aldosterone Antagonists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spironolactone</td>
<td>12.5 to 25 mg once</td>
<td>25 mg once or twice</td>
</tr>
<tr>
<td>Eplerenone</td>
<td>25 mg once</td>
<td>50 mg once</td>
</tr>
<tr>
<td>Beta Blockers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisoprolol</td>
<td>1.25 mg once</td>
<td>10 mg once</td>
</tr>
<tr>
<td>Carvedilol</td>
<td>3.125 mg twice</td>
<td>25 mg twice</td>
</tr>
<tr>
<td>Metoprolol succinate extended release (metoprolol CR/XL)</td>
<td>12.5 to 25 mg once</td>
<td>200 mg once</td>
</tr>
</tbody>
</table>

ACE indicates angiotensin converting enzyme; kg, kilograms, and mg, milligrams.

controlled studies, long-term therapy with ARBs produced hemodynamic, neurohormonal, and clinical effects consistent with those expected after interference with the renin angiotensin system (178–183). In patients with evidence of LV dysfunction early after MI, a recent trial demonstrated that ARBs had a benefit that was not inferior to that of ACEIs without an advantage in terms of tolerability (130). However, the addition of an ARB to an ACEI did not improve outcomes and resulted in more side effects.

For patients unable to tolerate ACEIs because of cough or angioedema, the ARBs valsartan and candesartan (177,184) have demonstrated benefit by reducing hospitalizations and mortality. The combination of an ACEI and ARBs may produce more reduction of LV size than either agent alone (185). The addition of ARBs to chronic ACEI therapy caused a modest decrease in hospitalization in 2 studies, with a trend to decreased total mortality in one and no impact on mortality in another (184,185,327).

Recommendations Concerning Angiotensin Receptor Blockers. Angiotensin converting enzyme inhibitors remain the first choice for inhibition of the renin-angiotensin system in chronic HF, but ARBs can now be considered a reasonable alternative. Candesartan improved outcomes in patients with preserved LVEF who were intolerant of ACEIs in the Candesartan in Heart Failure Assessment of Reduction in Mortality and Morbidity (CHARM) Alternative trial (177).
A recent trial investigated the newer aldosterone antagonist eplerenone in patients with LVEF less than or equal to 40% and clinical evidence of HF or diabetes mellitus within 4 days of MI. Mortality was decreased from 13.6% to 11.8% at 1 year. Hyperkalemia occurred in 5.5% of patients treated with eplerenone compared with 3.9% of those given placebo overall and in up to 10.1% versus 4.6% of patients with estimated creatinine clearance less than 50 mL per minute (118).

Table 7. Guidelines for Minimizing the Risk of Hyperkalemia in Patients Treated With Aldosterone Antagonists

1. Impaired renal function is a risk factor for hyperkalemia during treatment with aldosterone antagonists. The risk of hyperkalemia increases progressively when serum creatinine exceeds 1.6 mg/dL. In elderly patients or others with low muscle mass in whom serum creatinine does not accurately reflect glomerular filtration rate, determination that glomerular filtration rate or creatinine clearance exceeds 30 ml per minute is recommended.

2. Aldosterone antagonists should not be administered to patients with baseline serum potassium in excess of 5.0 mEq per liter.

3. An initial dose of spironolactone of 12.5 mg or eplerenone 25 mg is recommended, following which the dose may be increased to spironolactone 25 mg or eplerenone 50 mg if appropriate.

4. The risk of hyperkalemia is increased with concomitant use of higher doses of ACEIs (captopril greater than or equal to 75 mg daily; enalapril or lisinopril greater than or equal to 10 mg daily).

5. Non-steroidal anti-inflammatory drugs and cyclo-oxygenase-2 inhibitors should be avoided.

6. Potassium supplements should be discontinued or reduced.

7. Close monitoring of serum potassium is required; potassium levels and renal function should be checked in 3 days and at 1 week after initiating therapy and at least monthly for the first 3 months.

8. Diarrhea or other causes of dehydration should be addressed emergently.

*Although the entry criteria for the trials of aldosterone antagonists included creatinine greater than 2.5 mg per dL, the majority of patients had creatinine much lower; in 1 trial (335a) 95% of patients had creatinine less than or equal to 1.7 mg per dL.

ACEI indicates angiotensin converting enzyme inhibitor.

PRACTICAL USE OF ALDOSTERONE ANTAGONISTS. **Selection of patients.** Decisions regarding the selection of patients for aldosterone antagonists reflect the balance between potential benefit to decrease death and hospitalization from HF and potential risks of life-threatening hyperkalemia. Despite this, patients who meet recommended criteria from formal trials may need to be excluded in practice for a recent history of renal dysfunction characterized by higher creatinine, markedly elevated blood urea nitrogen, or hyperkalemia, particularly in the presence of insulin-requiring diabetes mellitus. Serum creatinine levels often underestimate renal dysfunction, particularly in the elderly, in whom estimated creatinine clearance less than 50 mL per minute should trigger a reduction of the initial dose of spironolactone to 12.5 mg daily or of eplerenone to 25 mg daily, and aldosterone antagonists should not be given when clearance is less than 30 mL per minute (Table 7). Patients chronically requiring high doses of diuretics without potassium replacement should be evaluated closely, because potassium handling may be impaired.

PRACTICAL USE OF ALDOSTERONE ANTAGONISTS. **Initiation and Monitoring.** Spironolactone should be initiated at a dose of 12.5 to 25 mg daily, or occasionally on alternate days. Eplerenone was used after MI in one study (118) at doses of 25 mg per day, increasing to 50 mg daily. Potential supplementation is generally stopped after the initiation of aldosterone antagonists, and patients should be counseled to avoid high potassium-containing foods. However, patients who have required large amounts of potassium supplementation may need to continue receiving supplementation, albeit at a lower dose, particularly when previous episodes of hypokalemia have been associated with ventricular arrhythmias. On the other hand, potassium supplementation required during vigorous therapy of fluid overload is often no longer necessary once the goal is to maintain even fluid
balance. Patients should be cautioned to avoid the addition of nonsteroidal anti-inflammatory agents and cyclooxygenase-2 inhibitors, which can lead to worsening renal function and hyperkalemia. Potassium levels and renal function should be rechecked within 3 days and again at 1 week after initiation of an aldosterone antagonist. Subsequent monitoring should be dictated by the general clinical stability of renal function and fluid status but should occur at least monthly for the first 3 months and every 3 months thereafter. The addition or an increase in dosage of ACEIs or ARBs should trigger a new cycle of monitoring. In view of the potential risk for hyperkalemia, the writing committee recommends that the routine triple combination of ACEIs, ARBs, and an aldosterone antagonist be avoided.

The development of potassium levels in excess of 5.5 mEq per liter should generally trigger discontinuation or dose reduction of the aldosterone antagonist unless patients have been receiving potassium supplementation, which should then be stopped. The development of worsening renal function should lead to careful evaluation of the entire medical regimen and consideration for stopping the aldosterone antagonist. Patients should be instructed specifically to stop the aldosterone antagonist during an episode of diarrhea or while loop diuretic therapy is interrupted.

4.3.1.2.3. BETA-ADRENERGIC RECEPTOR BLOCKERS. Beta blockers act principally to inhibit the adverse effects of the sympathetic nervous system in patients with HF, and these effects far outweigh their well-known negative inotropic effects. Whereas cardiac adrenergic drive initially supports the performance of the failing heart, long-term activation of the sympathetic nervous system exerts deleterious effects that can be antagonized by the use of beta blockers. Sympathetic activation can increase ventricular volumes and pressure by causing peripheral vasoconstriction (336) and by impairing sodium excretion by the kidneys (337). Norepinephrine can also induce cardiac hypertrophy but restrict the ability of the coronary arteries to supply blood to the thickened ventricular wall, leading to myocardial ischemia (316,338,339). Activation of the sympathetic nervous system can also provoke arrhythmias by increasing the automaticity of cardiac cells, increasing triggered activity in the heart, and promoting the development of hypokalemia (253,340–342). Norepinephrine can also increase heart rate and potentiate the activity and actions of other neurohormonal systems. Finally, by stimulating growth and oxidative stress in terminally differentiated cells, norepinephrine can trigger programmed cell death or apoptosis (343). These deleterious effects are mediated through actions on alpha-1-, beta-1-, and beta-2-adrenergic receptors (253,316,336–343).

Three beta blockers have been shown to be effective in reducing the risk of death in patients with chronic HF: bisoprolol (158) and sustained-release metoprolol (succinate) (159), which selectively block beta-1 receptors, and carvedilol (165,166), which blocks alpha-1-, beta-1-, and beta-2-receptors. Positive findings with these 3 agents, however, should not be considered indicative of a beta-blocker class effect, as shown by the lack of effectiveness of bucindolol and the lesser effectiveness of short-acting metoprolol in clinical trials (160,161,344). Patients who have Stage C HF should be treated with 1 of these 3 beta-blockers. The relative efficacy among these 3 agents is not known, but available evidence does suggest that beta-blockers can differ in their effects on survival (160). In one trial (161), carvedilol (target dose 25 mg twice daily) was compared with immediate-release metoprolol tartrate (target dose 50 mg twice daily). In that trial, carvedilol was associated with a significantly reduced mortality compared with metoprolol tartrate. Although both the dose and the formulation of metoprolol (metoprolol succinate) reduces the risk of death (162). There have been no trials to explore whether the survival benefits of carvedilol are greater than those of sustained-released metoprolol when both are used at the target doses.

Effect of Beta Blockers in the Management of HF. Beta blockers have now been evaluated in more than 20,000 patients with HF who participated in more than 20 published placebo-controlled clinical trials (89,93,158,162–164,166,167,345). All trials enrolled patients with reduced LVEF (EF less than 35% to 45%) who had already been treated with diuretics and an ACEI, with or without digitalis. These trials recruited many types of patients, including women and the elderly, as well as patients with a wide range of causes and severity of LV dysfunction, but patients with preserved systolic function, low heart rates (less than 65 beats per min), or low systolic blood pressure (less than 85 mm Hg) and those who were hospitalized or who had class IV HF were not recruited or represented a small proportion of the patients who participated in these published studies. An exception was one trial with carvedilol that enrolled clinically stable patients with NYHA functional class III and IV symptoms who were free of edema. That trial also demonstrated a reduction in mortality similar to the trials of patients with less advanced disease (345).

This collective experience indicates that long-term treatment with beta blockers can lessen the symptoms of HF, improve the clinical status of patients, and enhance the patient’s overall sense of well-being (168–175). In addition, like ACEIs, beta blockers can reduce the risk of death and the combined risk of death or hospitalization (158,162,164,176,346). These benefits of beta blockers were seen in patients with or without coronary artery disease and in patients with or without diabetes mellitus, as well as in women and black patients. The favorable effects of beta blockers were also observed in patients already taking ACEIs, which suggests that combined blockade of the 2 neurohormonal systems can produce additive effects.
PRACTICAL USE OF BETA BLOCKERS. Selection of patients. Beta blockers should be prescribed to all patients with stable HF due to reduced LVEF unless they have a contraindication to their use or have been shown to be unable to tolerate treatment with these drugs. Because of the favorable effects of beta blockers on survival and disease progression, treatment with a beta blocker should be initiated as soon as LV dysfunction is diagnosed. Even when symptoms are mild or have responded to other therapies, beta-blocker therapy is important and should not be delayed until symptoms return or disease progression is documented during treatment with other drugs. Therefore, even if patients do not benefit symptomatically because they have little disability, they should receive treatment with a beta-blocker to reduce the risk of disease progression, future clinical deterioration, and sudden death (158,162,164,175,176).

Patients need not be taking high doses of ACEIs before being considered for treatment with a beta blocker, because most patients enrolled in the beta-blocker trials were not taking high doses of ACEIs. Furthermore, in patients taking a low dose of an ACEI, the addition of a beta-blocker produces a greater improvement in symptoms and reduction in the risk of death than an increase in the dose of the ACEI, even to the target doses used in clinical trials (298,347). In patients with current or recent history of fluid retention, beta blockers should not be prescribed without diuretics, because diuretics are needed to maintain sodium and fluid balance and prevent the exacerbation of fluid retention that can accompany the initiation of beta-blocker therapy (348–350).

Which patients are sufficiently stable to be considered for treatment with a beta blocker? Regardless of the severity of symptoms, patients should not be hospitalized in an intensive care unit, should have no or minimal evidence of fluid overload or volume depletion, and should not have required recent treatment with an intravenous positive inotropic agent. Those excluded from treatment for these reasons should first receive intensified treatment with other drugs for HF (e.g., diuretics) and then be re-evaluated for beta-blockade after clinical stability has been achieved. Beta-blockers may be considered in patients who have reactive airway disease or asymptomatic bradycardia but should be used with great caution or not at all in patients with persistent symptoms of either condition.

PRACTICAL USE OF BETA BLOCKERS. Initiation and maintenance. Treatment with a beta blocker should be initiated at very low doses (see Table 6), followed by gradual increments in dose if lower doses have been well tolerated. Patients should be monitored closely for changes in vital signs and symptoms during this uptitrination period. In addition, because initiation of therapy with a beta-blocker can cause fluid alpha retention (348–350), physicians should ask patients to weigh themselves daily and to manage any increase in weight by immediately increasing the dose of concomitantly administered diuretics until weight is re-stored to pretreatment levels. Planned increments in the dose of a beta blocker should be delayed until any side effects observed with lower doses have disappeared. Using such a cautious approach, most patients (approximately 85%) enrolled in clinical trials with beta blockers were able to tolerate short- and long-term treatment with these drugs and achieve the maximum planned trial dose (158,162,164,165). Recent data show that beta blockers can be safely started before discharge even in patients hospitalized for HF, provided they do not require intravenous therapy for HF (351).

What dose of a beta blocker should physicians try to achieve in patients with HF? As with ACEIs, the dose of beta blockers in controlled clinical trials was not determined by a patient’s therapeutic response but was increased until the patient received a prespecified target dose. Low doses were prescribed only if the target doses were not tolerated, and thus, most trials did not evaluate whether low doses would be effective. Therefore, physicians, especially cardiologists and primary care physicians, should make every effort to achieve the target doses of the beta blockers shown to be effective in major clinical trials.

Once the target dose has been achieved, patients can generally continue long-term therapy with a beta blocker with little difficulty. Patients should be advised that clinical responses to the drug are generally delayed and may require 2 to 3 months to become apparent (273). Even if symptoms do not improve, long-term treatment should be maintained to reduce the risk of major clinical events. Abrupt withdrawal of treatment with a beta blocker can lead to clinical deterioration and should be avoided (352).

How should clinical deterioration be managed in patients who have been taking a beta blocker for long periods of time (more than 3 months)? Because long-term treatment with a beta blocker reduces the risk of worsening HF, discontinuation of long-term treatment with these drugs after an episode of worsening HF will not diminish and may in fact increase the subsequent risk of clinical decompensation. Consequently, if patients develop fluid retention, with or without mild symptoms, it is reasonable to continue the beta blocker while the dose of diuretic is increased (353). However, if the deterioration in clinical status is characterized by hypoperfusion or requires the use of intravenous positive inotropic drugs, it may be prudent to halt or significantly reduce treatment with beta blockers temporarily until the status of the patient stabilizes. In such patients, positive inotropic agents whose effects are mediated independently of the beta receptor (e.g., a phosphodiesterase inhibitor such as milrinone) may be preferred. Once stabilized, the beta blocker should be reintroduced to reduce the subsequent risk of clinical deterioration.

PRACTICAL USE OF BETA BLOCKERS. Risks of treatment. Initiation of treatment with a beta blocker has produced 4 types of adverse reactions that require attention and management, as discussed below.
1. FLUID RETENTION AND WORSENING HF

Initiation of therapy with a beta blocker can cause fluid retention (348–350), which is usually asymptomatic and is detected primarily by an increase in body weight but which may become sufficiently marked to cause worsening symptoms of HF (354). Patients with fluid retention before treatment are at greatest risk of fluid retention during treatment, and thus, physicians should ensure that patients are not volume overloaded before a beta blocker is initiated.

Furthermore, physicians should monitor patients closely for increases in weight and for worsening signs and symptoms of HF and should augment the dose of diuretic if weight increases whether or not other signs or symptoms of worsening HF are present. The occurrence of fluid retention or worsening HF is not generally a reason for the permanent withdrawal of treatment. Such patients generally respond favorably to intensification of conventional therapy, and once treated, such patients remain excellent candidates for long-term treatment with a beta blocker.

2. FATIGUE

Treatment with a beta blocker can be accompanied by feelings of general fatigue or weakness. In many cases, the sense of lassitude resolves spontaneously within several weeks without treatment, but in some patients, it may be severe enough to limit increments in dose or require the withdrawal of treatment. Complaints of fatigue can generally be managed by a reduction in the dose of the beta blocker (or the accompanying diuretic), but treatment should be discontinued if the syndrome of weakness is accompanied by evidence of peripheral hypoperfusion. Reinitiation at a later time or with a different effective beta blocker may be successful.

3. BRADYCARDIA AND HEART BLOCK

The slowing of heart rate and cardiac conduction produced by beta blockers is generally asymptomatic and thus generally requires no treatment; however, if the bradycardia is accompanied by dizziness or lightheadedness or if second- or third-degree heart block occurs, physicians should decrease the dose of the beta blocker. Physicians should also consider the possibility of drug interactions, because other drugs can cause bradycardia or heart block and may be discontinued. The role of pacemaker therapy with or without cardiac resynchronization therapy (CRT) to permit the use of beta-blocker therapy is entirely unknown.

4. HYPOTENSION

Beta blockers, especially those that also block alpha-1–receptors, can produce hypotension, which is usually asymptomatic but may produce dizziness, lightheadedness, or blurred vision (164). For beta blockers that also block alpha receptors, such as carvedilol, these vasodilatory side effects are generally seen within 24 to 48 hours of the first dose or the first increments in dose and usually subside with repeated dosing without any change in dose. Physicians may minimize the risk of hypotension by administering the beta blocker and ACEI at different times during the day. If this is ineffective, the occurrence of hypotension may require a temporary reduction in the dose of the ACEI. Hypotensive symptoms may also resolve after a decrease in the dose of diuretics in patients who are volume depleted, but in the absence of such depletion, relaxation of diuretic therapy may increase the risk or consequences of fluid retention (348–350). If hypotension is accompanied by other clinical evidence of hypoperfusion, beta-blocker therapy should be decreased or discontinued pending further patient evaluation.

4.3.1.2.4. DIGITALIS. The digitalis glycosides exert their effects in patients with HF by virtue of their ability to inhibit sodium-potassium (Na⁺-K⁺) adenosine triphosphatase (ATPase) (355). Inhibition of this enzyme in cardiac cells results in an increase in the contractile state of the heart, and for many decades, the benefits of digitalis in HF were ascribed exclusively to this positive inotropic action. However, recent evidence suggests that the benefits of digitalis may be related in part to enzyme inhibition in noncardiac tissues. Inhibition of Na⁺-K⁺ ATPase in vagal afferent fibers acts to sensitize cardiac baroreceptors, which in turn reduces sympathetic outflow from the central nervous system (356,357). In addition, by inhibiting Na⁺-K⁺ ATPase in the kidney, digitalis reduces the renal tubular reabsorption of sodium (358); the resulting increase in the delivery of sodium to the distal tubules leads to the suppression of renin secretion from the kidneys (359). These observations have led to the hypothesis that digitalis acts in HF primarily by attenuating the activation of neurohormonal systems and not as a positive inotropic drug (360). Although a variety of digitalis glycosides have been used in the treatment of HF for the last 200 years, the most commonly used preparation in the United States is digoxin.

EFFECT OF DIGITALIS IN THE TREATMENT OF HF. Several placebo-controlled trials have shown that treatment with digoxin for 1 to 3 months can improve symptoms, quality of life, and exercise tolerance in patients with mild to moderate HF (229–235). These benefits have been seen regardless of the underlying rhythm (normal sinus rhythm or atrial fibrillation), cause of HF (ischemic or nonischemic cardiomyopathy), or concomitant therapy (with or without ACEIs). In a long-term trial that enrolled patients who primarily had Class II or III symptoms, treatment with digoxin for 2 to 5 years had no effect on mortality but modestly reduced the combined risk of death and hospitalization (134).

PRACTICAL USE OF DIGITALIS IN HF. Selection of patients. Physicians may consider adding digoxin in patients with persistent symptoms of HF during therapy with diuretics, an ACEI (or ARB), and a beta blocker (361,362). Digoxin may also be added to the initial regimen in patients with severe symptoms who have not yet responded symptomat-
ically during treatment with diuretics, an ACEI, and beta blockers. Alternatively, treatment with digoxin may be delayed until the patient’s response to ACEIs and beta blockers has been defined and be used only in patients who remain symptomatic despite therapy with the neurohormonal antagonists. Yet another strategy is to initiate aldosterone antagonists in this type of symptomatic patient and delay the addition of digoxin except in patients who do not respond or who cannot tolerate aldosterone antagonists. If a patient is taking digoxin but not an ACEI or a beta blocker, treatment with digoxin should not be withdrawn, but appropriate therapy with the neurohormonal antagonists should be instituted. Digoxin is prescribed routinely in patients with HF and chronic atrial fibrillation, but beta blockers are usually more effective when added to digoxin in controlling the ventricular response, particularly during exercise (363–366). Because beta blockers improve survival and may be effective in controlling rate alone, digoxin should be considered as an adjunctive agent for rate control.

Digoxin is not indicated as primary therapy for the stabilization of patients with an acute exacerbation of HF symptoms, including fluid retention or hypotension. Such patients should first receive appropriate treatment for HF (usually with intravenous medications); therapy with digoxin may be initiated after stabilization as part of an effort to establish a long-term treatment strategy.

Patients should not be given digoxin if they have significant sinus or atrioventricular block, unless the block has been addressed with a permanent pacemaker. The drug should be used cautiously in patients taking other drugs that can depress sinus or atrioventricular nodal function or affect digoxin levels (e.g., amiodarone or a beta blocker), even though such patients usually tolerate digoxin without difficulty.

PRACTICAL USE OF DIGITALIS IN HF. Initiation and maintenance. Although a variety of glycosides have been utilized, digoxin is the most commonly used, and it is the only glycoside that has been evaluated in placebo-controlled trials. There is little reason to prescribe other cardiac glycosides for the management of HF.

Therapy with digoxin is commonly initiated and maintained at a dose of 0.125 to 0.25 mg daily. Low doses (0.125 mg daily or every other day) should be used initially if the patient is more than 70 years old, has impaired renal function, or has a low lean body mass (367). Higher doses (e.g., digoxin 0.375 to 0.50 mg daily) are rarely used or needed in the management of patients with HF. There is no reason to use loading doses of digoxin to initiate therapy in patients with HF.

Doses of digoxin that achieve a concentration of drug in plasma in the range of 0.5 to 1.0 ng per mL are suggested, given the limited evidence currently available. There has been no prospective, randomized evaluation of the relative efficacy or safety of different plasma concentrations of digoxin. Retrospective analysis of 2 studies of digoxin withdrawal found that the prevention of worsening HF by digoxin at lower concentrations in plasma (0.5 to 0.9 ng per mL) was as great as that achieved at higher concentrations (368). In a retrospective analysis of the Digitalis Investigation Group trial, risk-adjusted mortality increased as the plasma concentrations exceeded 1.0 ng per mL (369). However, the likelihood that reduced clearance of digoxin by renal and hepatic P-glycoprotein transporters reflects HF severity provides an alternate explanation of the relationship of higher plasma levels with mortality, and the most conservative interpretation is that levels of digoxin greater than 1.0 ng per mL were not associated with a superior outcome.

PRACTICAL USE OF DIGITALIS IN HF. Risks of treatment. When administered with attention to dose and to factors that alter its disposition, digoxin is well tolerated by most patients with HF (370). The principal adverse reactions occur primarily when digoxin is administered in large doses, but large doses may not be needed to produce clinical benefits (371–373). The major side effects include cardiac arrhythmias (e.g., ectopic and re-entrant cardiac rhythms and heart block), gastrointestinal symptoms (e.g., anorexia, nausea, and vomiting), and neurological complaints (e.g., visual disturbances, disorientation, and confusion). Overt digitalis toxicity is commonly associated with serum digoxin levels greater than 2 ng per mL. However, toxicity may occur with lower digoxin levels, especially if hypokalemia, hypomagnesemia, or hypothyroidism coexists (374,375). The concomitant use of clarithromycin, erythromycin, amiodarone, itraconazole, cyclosporine, verapamil, or quinidine can increase serum digoxin concentrations and may increase the likelihood of digitalis toxicity (219,376,377). The dose of digoxin should be reduced if treatment with these drugs is initiated. Spironolactone does not inhibit the disposition of digoxin (378); cross-reactivity of some digoxin antibodies with spironolactone confounded earlier attempts to assess the effect of spironolactone on digoxin clearance. In addition, a low lean body mass and impaired renal function can also elevate serum digoxin levels, which may explain the increased risk of digitalis toxicity in elderly patients. Of note, one analysis suggested that women may not benefit from digoxin therapy and may be at increased risk for death with such therapy (379).

In addition to these established side effects, there is concern that levels of digoxin that previously had been considered to be in the therapeutic range (up to 2 ng per mL) may exert deleterious cardiovascular effects in the long term, even though such levels appear to be well tolerated in the short-term. In one major long-term trial, serum digoxin concentrations in the therapeutic range were associated with an increased frequency of hospitalizations for cardiovascular events other than HF and an increased risk of death due to arrhythmias or MI (134). These effects neutralized any benefit on survival that might otherwise have been seen as a result of the favorable effect of the drug on HF. These
observations have raised the possibility that digoxin doses and serum digoxin concentrations that are generally considered by physicians to be safe may adversely affect the heart (380). Digoxin should be used with caution or not used at all in post-MI patients, particularly if they have ongoing ischemia (381).

The writing committee has re-evaluated the evidence pertinent to the value of digitalis therapy in patients with HF. Although no new data or trials using digitalis have emerged since publication of the 2001 guidelines, the writing committee believes that in terms of safety and efficacy, digitalis does not compare favorably with such agents as the aldosterone blockers, to which the writing committee has assigned a Class IIa level of recommendation. If digitalis were a new drug with clinical trials showing a very narrow risk/benefit ratio (especially for potential use in the aging population) and no mortality benefit, it would clearly not be considered for a Class I recommendation. The writing committee, therefore, decided to change the level of recommendation for digitalis glycosides from Class I to Class IIa in the current document.

4.3.1.2.5. Ventricular Arrhythmias and Prevention of Sudden Death (Updated). Patients with LV dilation and reduced LVEF frequently manifest ventricular tachyarrhythmias, both nonsustained ventricular tachycardia (VT) and sustained VT. The cardiac mortality of patients with all types of ventricular tachyarrhythmias is high. The high mortality results from progressive HF, as well as from sudden death. Sudden death is often equated with a primary arrhythmic event, but multiple causes of sudden death have been documented and include ischemic events such as acute MI (382), electrolyte disturbances, pulmonary or systemic emboli, or other vascular events. Although ventricular tachyarrhythmias are the most common rhythms associated with unexpected sudden death, bradycardia and other pulseless supraventricular rhythms are common in patients with advanced HF (383).

Sudden death can be decreased meaningfully by the therapies that decrease disease progression, as discussed elsewhere in these guidelines. For instance, clinical trials with beta blockers have shown a reduction in sudden death, as well as in all-cause mortality, in both postinfarction patients and patients with HF regardless of cause (124,125,158,162,164). Aldosterone antagonists decrease sudden death and overall mortality in HF early after MI and in advanced HF (118). Sudden unexpected death can be decreased further by the use of implanted devices that terminate sustained arrhythmias (144,205). Even when specific antiarrhythmic therapy is necessary to diminish recurrent ventricular tachyarrhythmias and device firings, the frequency and tolerance of arrhythmias may be improved with appropriate therapy for HF. In some cases, definitive therapy of myocardial ischemia or other reversible factors may prevent recurrence of tachyarrhythmia, particularly polymorphic VT, ventricular fibrillation, and nonsustained VT. Nonetheless, implantable defibrillators should be recommended in all patients who have had a life-threatening tachyarrhythmia and have an otherwise good prognosis.

The absolute frequency of sudden death is highest in patients with severe symptoms, or Stage D HF. Many patients with end-stage symptoms experience “sudden death” that is nonetheless expected. Prevention of sudden death in this population could potentially shift the mode of death from sudden to that of progressive HF without decreasing total mortality, as competing risks of death emerge. On the other hand, prevention of sudden death in mild HF may allow many years of meaningful survival. This makes it imperative for physicians to not only assess an individual patient’s risk for sudden death but also assess overall prognosis and functional capacity before consideration of device implantation.

Secondary Prevention of Sudden Death. Patients with previous cardiac arrest or documented sustained ventricular arrhythmias have a high risk of recurrent events. Implantation of an ICD has been shown to reduce mortality in cardiac arrest survivors. An ICD is indicated for secondary prevention of death from ventricular tachyarrhythmias in patients with otherwise good clinical function and prognosis, for whom prolongation of survival is a goal. Patients with chronic HF and a low EF who experience syncope of unclear origin have a high rate of subsequent sudden death and should also be considered for placement of an ICD (198). However, when ventricular tachyarrhythmias occur in a patient with a progressive and irreversible downward spiral of clinical HF decompensation, placement of an ICD is not indicated to prevent recurrence of sudden death, because death is likely imminent regardless of mode. An exception may exist for the small minority of patients for whom definitive therapy such as cardiac transplantation is planned.

Primary Prevention of Sudden Death. Patients with low EF without prior history of cardiac arrest, spontaneous VT, or inducible VT (positive programmed electrical stimulation study) have a risk of sudden death that is lower than for those who have experienced previous events, but it remains significant. Within this group, it has not yet been possible to identify those patients at highest risk, especially in the absence of prior MI. Approximately 50% to 70% of patients with low EF and symptomatic HF have episodes of non-sustained VT on routine ambulatory electrocardiographic monitoring; however, it is not clear whether the occurrence of complex ventricular arrhythmias in these patients with HF contributes to the high frequency of sudden death or, alternatively, simply reflects the underlying disease process (384–386). Antiarrhythmic drugs to suppress premature ventricular depolarizations and nonsustained ventricular arrhythmias have not improved survival (191,192), although nonsustained VT may play a role in triggering ventricular tachyarrhythmias. Furthermore, most antiarrhythmic drugs have negative inotropic effects and can increase the risk of serious arrhythmia; these adverse cardiovascular effects are particularly pronounced in patients with low EF (193,247,
This risk is especially high with the use of Class IA agents (quinidine and procainamide), Class IC agents (flecainide and propafenone), and some Class III agents (d-sotalol) (191,192,388,389), which have increased mortality in post-MI trials (390).

Amiodarone is a Class III antiarrhythmic agent but differs from other drugs in this Class in having a sympatholytic effect on the heart (391). Amiodarone has been associated with overall neutral effects on survival when administered to patients with low EF and HF (196,392–394). Amiodarone therapy may also act through mechanisms other than antiarrhythmic effects, because amiodarone has been shown in some trials to increase LVEF and decrease the incidence of worsening HF (393,394). Side effects of amiodarone include thyroid abnormalities, pulmonary toxicity, hepatotoxicity, neuropathy, insomnia, and numerous other reactions. Therefore, amiodarone should not be considered as part of the routine treatment of patients with HF, with or without frequent premature ventricular depolarizations or asymptomatic nonsustained VT; however, it remains the agent most likely to be safe and effective when antiarrhythmic therapy is necessary to prevent recurrent atrial fibrillation or symptomatic ventricular arrhythmias. Other pharmacological antiarrhythmic therapies, apart from beta blockers, are rarely indicated in HF but may occasionally be used to suppress recurrent ICD shocks when amiodarone has been ineffective or discontinued owing to toxicity.

The role of ICDs in the primary prevention of sudden death in patients without prior history of symptomatic arrhythmias has been explored recently in a number of trials. If sustained ventricular tachyarrhythmias can be induced in the electrophysiology laboratory in patients with previous MI or chronic ischemic heart disease, the risk of sudden death in these patients is in the range of 5% to 6% per year and can be improved by ICD implantation (199).

The role of ICD implantation for the primary prevention of sudden death in patients with HF and low EF and no history of spontaneous or inducible VT has been addressed by several large trials that used only readily available clinical data as entry criteria (196,200,201). The first of these demonstrated that ICDs, compared with standard medical therapy, decreased the occurrence of total mortality for patients with EF of 30% or less after remote MI (200). Absolute mortality was decreased in the ICD arm by 5.6%, a relative decrease of 31% over 20 months. In a second trial, a survival benefit was not demonstrated with devices implanted within 6 to 40 days after an acute MI in patients who at that time had an EF less than 35% and abnormal heart rate variability. Although sudden deaths were decreased, there was an increase in other events, and ICD implantation did not confer any survival benefit in this setting (201). A third trial examining the benefit of ICD implantation for patients with EF less than 35% and NYHA functional class II to III symptoms of HF included both ischemic and nonischemic causes of HF; absolute mortality was decreased by 7.2% over a 5-year period in the arm that received a simple “shock-box” ICD with backup pacing at a rate of 40 bpm. This represented a relative mortality decrease of 23%, which was a survival increase of 11% (196). There was no improvement in survival during the first year, with a 1.8% absolute survival benefit per year averaged over the next 4 years. The DEFINITE (Defibrillators in Non-Ischemic Cardiomyopathy Treatment Evaluation) trial compared medical therapy alone with medical therapy plus an ICD in patients with nonischemic cardiomyopathy, NYHA functional class I to III HF, and an LVEF less than 36% (395). The ICD was associated with a reduction in all-cause mortality that did not reach statistical significance but was consistent in terms of magnitude of effect (30%) with the findings of the MADIT II (Multicenter Automatic Defibrillator Implantation II) (200) and the SCD-HeFT (Sudden Cardiac Death in Heart Failure: Trial of prophylactic amiodarone versus implantable defibrillator therapy) (196).

There is an intrinsic variability in measurement of EF particularly shortly after recovery from an acute coronary syndrome event. Moreover, as reviewed earlier, the pivotal primary prevention trials used a variable inclusion EF, ranging below 30% or 36%. Given the totality of the data demonstrating the efficacy of an ICD in reducing overall mortality in a population with dilated cardiomyopathy of either ischemic or nonischemic origins, the current recommendation is to include all such patients with an LVEF of less than or equal to 35%.

ICDs are highly effective in preventing death due to ventricular tachyarrhythmias; however, frequent shocks from an ICD can lead to a reduced quality of life, whether triggered appropriately by life-threatening rhythms or inappropriately by sinus or other supraventricular tachycardia. For symptoms from recurrent discharges triggered by ventricular arrhythmias or atrial fibrillation, antiarrhythmic therapy, most often amiodarone, may be added. For recurrent ICD discharges from VT despite antiarrhythmic therapy, catheter ablation may be effective (396).

It is important to recognize that ICDs have the potential to aggravate HF and have been associated with an increase in HF hospitalizations (200,202). This may result from right ventricular pacing that produces dysynchronous cardiac contraction; however, the occurrence of excess nonsudden events with ICDs placed early after MI suggests that other factors may also limit the overall benefit from ICDs. Careful attention to the details of ICD implantation, programming, and pacing function is important for all patients with low EF who are treated with an ICD. The ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities (144) provides further discussion of the potential problem of worsening HF and LV function in all patients with right ventricular pacing.

The decision regarding the balance of potential risks and benefits of ICD implantation for an individual patient thus remains a complex one. A decrease in incidence of sudden
death does not necessarily translate into decreased total mortality, and decreased total mortality does not guarantee a prolongation of survival with meaningful quality of life. This concept is particularly important in patients with limited prognosis owing to advanced HF or other serious comorbidities, because there was no survival benefit observed from ICD implantation until after the first year in 2 of the major trials (196,200). Furthermore, the average age of patients with HF and low EF is over 70 years, a population not well represented in any of the ICD trials. Comorbidities common in the elderly population, such as prior stroke, chronic pulmonary disease, and crippling arthritic conditions, as well as nursing home residence, should be factored into discussions regarding ICD. Atrial fibrillation, a common trigger for inappropriate shocks, is more prevalent in the elderly population. The gap between community and trial populations is particularly important for a device therapy that may prolong survival but has no positive impact on function or quality of life. Some patients may suffer a diminished quality of life because of device-site complications, such as bleeding, hematoma, or infections, or after ICD discharges, particularly those that are inappropriate.

Consideration of ICD implantation is thus recommended in patients with EF less than or equal to 35% and mild to moderate symptoms of HF and in whom survival with good functional capacity is otherwise anticipated to extend beyond 1 year. Because medical therapy may substantially improve EF, consideration of ICD implants should follow documentation of sustained reduction of EF despite a course of beta blockers and ACEIs or ARBs; however, ICDs are not warranted in patients with refractory symptoms of HF (Stage D) or in patients with concomitant diseases that would shorten their life expectancy independent of HF. Before implantation, patients should be fully informed of their cardiac prognosis, including the risk of both sudden and nonsudden mortality; the efficacy, safety, and risks of an ICD; and the morbidity associated with an ICD shock. Patients and families should clearly understand that the ICD does not improve clinical function or delay HF progression. Most important, the possible reasons and process for potential future deactivation of defibrillator features should be discussed long before functional capacity or outlook for survival is severely reduced.

4.3.1.3. INTERVENTIONS TO BE CONSIDERED FOR USE IN SELECTED PATIENTS

Controlled clinical trials have shown some interventions to be useful in limited cohorts of patients with HF. Several of these interventions are undergoing active investigation in large-scale trials to determine whether their role in the management of HF might be justifiably expanded, and others have already been validated as useful in specific cohorts.

4.3.1.3.1. ISOSORBIDE DINITRATE. Isosorbide dinitrate was one of the first vasodilator agents reported to be useful for chronic therapy of HF. Nitrate therapy may decrease symptoms of dyspnea at night and during exercise and may improve exercise tolerance in patients who have persistent limitations despite optimization of other therapies (397). Most experience relates to the oral dinitrate and more recently the mononitrate preparations, with little information available about topical nitrate therapy in this population. Recent evidence suggests that nitrates can inhibit abnormal myocardial and vascular growth (398,399) and may thereby attenuate the process of ventricular remodeling (400) and improve symptoms.

The only common side effects of nitrate therapy are headaches and hypotension. In clinical use, nitrates are frequently prescribed to patients with persistent congestive symptoms. Although the only large trial of nitrates in HF (239) used a combination of nitrates and hydralazine, nitrates predominantly are potent venodilators that also have effects on arterial tone when used alone, particularly when systemic vascular resistance is severely elevated. Because they act through cyclic guanosine monophosphate, there is a theoretical reason that they may be titrated up to facilitate weaning of intravenous infusions that act through the same pathway.

There is extensive literature regarding the development of nitrate tolerance. This appears to be minimized by prescription of a “nitrate-free interval” of at least 10 hours and by combination with ACEIs or hydralazine.

4.3.1.3.2. HYDRAZINE. Hydralazine is an arterial vasodilator with relatively little effect on venous tone and cardiac filling pressures. The rationale for its combined use with nitrates was to achieve both venous and arterial vasodilation (401,402). In addition to its direct vascular actions, hydralazine in theory may interfere with the biochemical and molecular mechanisms responsible for the progression of HF (403,404) and the development of nitrate tolerance (405–408). There are limited data regarding the use of hydralazine alone in HF.

4.3.1.3.3. HYDRAZINE AND ISOSORBIDE DINITRATE (UPDATED). In a large-scale trial that compared the vasodilator combination with placebo, the use of hydralazine and isosorbide dinitrate reduced mortality but not hospitalizations in patients with HF treated with digoxin and diuretics but not an ACEI or beta blocker (238,239). However, in another large-scale trial that compared the vasodilator combination with an ACEI, the ACEI produced more favorable effects on survival (156), a benefit not evident in the subgroup of patients with class III to IV HF. In both trials, the use of hydralazine and isosorbide dinitrate produced frequent adverse reactions (primarily headache and gastrointestinal complaints), and many patients could not continue treatment at target doses.

Of note, a post hoc retrospective analysis of both vasodilator trials demonstrated particular efficacy of isosorbide dinitrate and hydralazine in the African American cohort (222). A confirmatory trial has been done. In that trial, which was limited to the patients self-described as African American, the addition of hydralazine and isosorbide dinitrate to standard therapy with an ACEI and/or a beta
blocker was shown to be of significant benefit (223). The benefit was presumed to be related to enhanced nitric oxide bioavailability. Accordingly, this combination is recommended for African Americans who remain symptomatic despite optimal medical therapy. Whether this benefit is evident in other patients with HF remains to be investigated. The combination of hydralazine and isosorbide dinitrate should not be used for the treatment of HF in patients who have no prior use of an ACEI and should not be substituted for ACEI in patients who are tolerating ACEIs without difficulty.

Despite the lack of data with the vasodilator combination in patients who are intolerant of ACEIs, the combined use of hydralazine and isosorbide dinitrate may be considered as a therapeutic option in such patients. However, compliance with this combination has generally been poor because of the large number of tablets required and the high incidence of adverse reactions (156,238). For patients with more severe HF symptoms and ACEI intolerance, the combination of hydralazine and nitrates is used frequently, particularly when ACEI therapy is limited by hypotension or renal insufficiency. There are, however, no trials addressing the use of isosorbide dinitrate and hydralazine specifically in the population of patients who have persistent symptoms and intolerance to inhibitors of the renin-angiotensin system.

4.3.1.3.4. CARDIAC RESYNCHRONIZATION THERAPY (UPDATED).

Approximately one-third of patients with low EF and class III to IV symptoms of HF manifest a QRS duration greater than 0.12 seconds (409–411). This electrocardiographic representation of abnormal cardiac conduction has been used to identify patients with dyssynchronous ventricular contraction. While imperfect, no other consensus definition of cardiac dyssynchrony exists as yet, although several echocardiographic measures appear promising. The mechanical consequences of dyssynchrony include suboptimal ventricular filling, a reduction in LV dP/dt (rate of rise of ventricular contractile force or pressure), prolonged duration (and therefore greater severity) of mitral regurgitation, and paradoxical septal wall motion (412–414). Ventricular dyssynchrony has also been associated with increased mortality in HF patients (206–208). Dyssynchronous contraction can be addressed by electrically activating the right and left ventricles in a synchronized manner with a biventricular pacemaker device. This approach to HF therapy, commonly called cardiac resynchronization therapy (CRT), may enhance ventricular contraction and reduce the degree of secondary mitral regurgitation (209–211). In addition, the short-term use of CRT has been associated with improvements in cardiac function and hemodynamics without an accompanying increase in oxygen use (212), as well as adaptive changes in the biochemistry of the failing heart (210).

To date, more than 4000 HF patients with ventricular dyssynchrony have been evaluated in randomized controlled trials of optimal medical therapy alone versus optimal medical therapy plus CRT with or without an ICD. CRT, when added to optimal medical therapy in persistently symptomatic patients, has resulted in significant improvements in quality of life, functional class, exercise capacity (by peak oxygen uptake) and exercise distance during a 6-minute walk test, and EF in patients randomized to CRT (213) or to the combination of CRT and ICD (205,214,215). In a meta-analysis of several CRT trials, HF hospitalizations were reduced by 32% and all-cause mortality by 25% (215). The effect on mortality in this meta-analysis became apparent after approximately 3 months of therapy (215). In 1 study, subjects were randomized to optimal pharmacological therapy alone, optimal medical therapy plus CRT alone, or optimal medical therapy plus the combination of CRT and an ICD. Compared with optimal medical therapy alone, both device arms significantly decreased the combined risk of all-cause hospitalization and all-cause mortality by approximately 20%, whereas the combination of a CRT and an ICD decreased all-cause mortality significantly by 36% (216). More recently, in a randomized controlled trial comparing optimal medical therapy alone with optimal medical therapy plus CRT alone (without a defibrillator), CRT significantly reduced the combined risk of death of any cause or unplanned hospital admission for a major cardiovascular event (analyzed as time to first event) by 37% (204). In that trial, all-cause mortality was significantly reduced by 36% and HF hospitalizations by 52% with the addition of CRT.

Thus, there is strong evidence to support the use of CRT to improve symptoms, exercise capacity, quality of life, LVEF, and survival and to decrease hospitalizations in patients with persistently symptomatic HF undergoing optimal medical therapy who have cardiac dyssynchrony (as evidenced by a prolonged QRS duration). The use of an ICD in combination with CRT should be based on the indications for ICD therapy.

With few exceptions, resynchronization trials have enrolled patients in normal sinus rhythm. Although the entry criteria specified QRS duration only longer than 0.12 seconds, the average QRS duration in the large trials was longer than 0.15 seconds, with less information demonstrating benefit in patients with lesser prolongation of QRS. Two small studies, one randomized (217) and the other observational (218), evaluated the potential benefit of CRT in HF patients with ventricular dyssynchrony and atrial fibrillation. Although both studies demonstrated the benefit of CRT in these patients, the total number of patients examined (fewer than 100) precludes a recommendation for CRT in otherwise eligible patients with atrial fibrillation. To date, only a small number of patients with “pure” right bundle-branch block have been enrolled in CRT trials. Similarly, the prolonged QRS duration associated with right ventricular pacing has also been associated with ventricular dyssynchrony that may be improved by CRT, but no published studies have addressed this situation as yet. Recommendations regarding CRT for patients with LVEF of less than or equal to 35%, NYHA functional class III, and ambulatory class IV symptoms or dependence on ventricular
pacing have been updated to be consistent with the ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities (144).

Ten studies have reported on CRT peri-implant morbidity and mortality. There were 13 deaths in 3113 patients (0.4%). From a pooled assessment of 3475 patients in 17 studies, the success rate of implantation was approximately 90% (215). Device-related problems during the first 6 months after implantation reported in 13 studies included lead malfunction or dislodgement in 8.5%, pacemaker problems in 6.7%, and infection in 1.4% of cases. These morbidity and mortality data are derived from trials that used expert centers. Results in individual clinical centers may vary considerably and are subject to a significant learning curve for each center; however, as implantation techniques evolve and equipment improves, complication rates may also decline (215).

4.3.1.5. Exercise Training. In the past, patients with HF were advised to avoid physical exertion in the hope that bed rest might minimize symptoms (415) and in the belief that physical activity might accelerate the progression of LV dysfunction (416–418); however, it is now understood that a reduction in physical activity (produced by the symptoms of HF or prescribed by physicians treating HF) leads to a state of physical deconditioning that contributes to the symptoms and exercise intolerance of patients with chronic HF (243,246). Limitations of activity not only may impair exercise capacity but also may produce adverse psychological effects and impair peripheral vasodilatory responses (245,419). These findings have led to the hypothesis that exercise training might improve the clinical status of patients with chronic HF (243,420).

Several controlled trials have shown that exercise training can lessen symptoms, increase exercise capacity, and improve the quality of life of patients with chronic HF (421–430). The improvement was comparable to that achieved with pharmacological interventions (420), was in addition to the benefits of ACEIs and beta blockers (422,423), and was associated with an enhancement of endothelium-dependent peripheral vasodilation and skeletal muscle metabolism (424,431). In these studies, physical conditioning was generally accomplished in the context of a formal program, which required patients to gradually achieve workloads of 40% to 70% of maximal effort for 20 to 45 minutes 3 to 5 times per week for periods of 8 to 12 weeks (429).

The long-term effects of exercise training have not been completely defined. In short-term studies, exercise training has been accompanied by a reduction in the activation of neurohormonal systems and attenuation of the process of ventricular remodeling (424,432,433). In the experimental setting, exercise appears to attenuate the rate of progression of HF (434,435). These observations suggest that exercise training might have a favorable effect on the natural history of HF. Only 1 study has evaluated the long-term effect of physical conditioning in patients with HF (430), and in that trial, exercise training was associated with a reduction in the risk of hospitalization and death. Little work has been conducted to identify patients most likely to respond favorably to training and to define optimal exercise protocols.

Recommendations Concerning Exercise Training. Exercise training should be considered for all stable outpatients with chronic HF who are able to participate in the protocols needed to produce physical conditioning. Exercise training should be used in conjunction with drug therapy.

4.3.1.4. Drugs and Interventions Under Active Investigation

Several drugs and other interventions are undergoing active evaluation in long-term, large-scale trials because they showed promise in pilot studies that involved small numbers of patients. Until the results of definitive trials are available, none of these interventions can be recommended for use in patients with HF. Several drugs that showed promise in pilot studies and were included in this section in the 2001 guidelines failed to live up to their promise in long-term, large-scale trials and are no longer included as “promising” in this update. Several remain under or have begun active investigation. Investigational drug therapies currently in phase III evaluation for the treatment of chronic HF include vasopressin receptor antagonists, intermittent nesiritide infusions, and oral phosphodiesterase III inhibitors. In addition, newer devices and technologies, such as implantable hemodynamic monitors and internal cardiac support devices, external counterpulsation, treatment for sleep-disordered breathing, myocardial growth factors and stem cell transplantation, and devices to achieve intravascular volume reduction, as well as novel surgical approaches, including surgical ventricular restoration, are under active investigation. Several of these are discussed below.

4.3.1.4.1. Techniques for Respiratory Support. Patients with HF frequently exhibit abnormal respiratory patterns, including Cheyne-Stokes breathing and sleep-disordered breathing (436). In the Sleep Heart Health Study, the presence of sleep-disturbed breathing was associated with a 2.38 relative risk of HF independent of other known risk factors (437). This risk of HF exceeded that for all other cardiovascular disease syndromes evaluated, including hypertension, stroke, and coronary artery disease. The use of nocturnal oxygen and devices that provide continuous positive airway pressure has been reported to produce symptomatic improvement (438,439). Although there is no direct evidence that treatment of sleep-disturbed breathing prevents incident HF, treatment of established LV dysfunction with continuous positive airway pressure breathing has been shown to improve LV structure and function in patients with either obstructive or central sleep apnea disturbed-breathing syndrome (440). Additional studies are in progress to evaluate the efficacy of these interventions. It is hoped that such studies will provide information about the efficacy and safety of this approach and help identify patients most likely to benefit from treatment.

4.3.1.4.2. External Counterpulsation. The technique of external counterpulsation involves the use of a device with
inflatable cuffs that surround the lower limbs and inflate and deflate in synchronization with the cardiac cycle. The device is designed to reduce loading conditions in systole while increasing coronary perfusion pressures in diastole (441). External counterpulsation has been shown to reduce the frequency and severity of anginal attacks in patients with symptomatic coronary artery disease (442). A possible mechanism of action for this observed clinical effect may be an improvement in endothelial function of the coronary vascular bed (443,444). Early trials of this therapy in patients with HF and low EF have been encouraging, and a randomized trial has been completed recently (445,446).

Until more data are available, routine use of this therapy cannot be recommended for the management of patients with symptomatic reduced LVEF.

4.3.1.4.3. Vasopressin Receptor Antagonists. Arginine vasopressin is a peptide hormone with significant cardiovascular and renal effects. These effects are mediated through at least 2 receptor subtypes: the V1A receptor, which is found on vascular smooth muscle cells and in the myocardium, and the V2 receptors, which are found in the kidney. Vasopressin levels are often elevated in patients with HF and LV dysfunction, and they appear to be associated with adverse outcomes in the setting of low EF after MI (447).

Early studies with 2 different vasopressin receptor antagonists have shown favorable changes in hemodynamics and urine output without a significant change in blood pressure or heart rate. The drugs appear to reduce body weight and edema, and they normalized serum sodium in patients with hyponatremia, but the duration and significance of these clinical effects are not clear (448,449). Currently, longer-term clinical trials are under way to determine the role, if any, of these vasopressin antagonists in patients with chronic HF (450,451).

4.3.1.4.4. Implantable Hemodynamic Monitors. Several implantable systems are in development for the chronic, remote, outpatient monitoring of ventricular filling pressures and other hemodynamic and clinical variables in HF patients. One such system has completed phase I and II study and is currently being evaluated in a phase III randomized outcomes trial. The hypothesis underlying this approach suggests that changes in therapy to optimize LV filling pressure may improve outcomes in HF patients (452,453).

4.3.1.4.5. Cardiac Support Devices. There is developing experience with surgical devices that are designed to alter physical stresses on the LV; theoretically, the devices may improve performance or attenuate further ventricular dilatation. One such device now being evaluated clinically is a cardiac wrapping device made from a bidirectional woven polyester that allows for shortening but resists circumferential expansion beyond the limits of the wrap (454). Clinical trials in Europe (455) and the United States are currently under way to evaluate the safety and efficacy of this device in patients. Other ventricular constraint or support devices are also under investigation in Europe and the United States.

4.3.1.4.6. Surgical Approaches Under Investigation. A number of surgical approaches have emerged as potentially beneficial in patients with ischemic HF. The goals of such procedures generally include revascularization, reduction in “geometric” or functional mitral regurgitation, and restoration of a more normal LV geometry and function. In this context, the so-called surgical ventricular restoration procedure is one of the most extensively studied and applied techniques for reshaping or excluding anteroapical and septal regions of asynergy (456–458). The surgical ventricular restoration procedure, although extensively applied to the treatment of LV asynergy, is now being studied prospectively in a randomized trial comparing standard medical therapy versus surgical therapy (coronary artery bypass grafting) alone versus surgical ventricular restoration plus coronary artery bypass grafting in patients with ischemic HF. The National Heart, Lung, and Blood Institute’s multicenter, international, randomized STICH (Surgical Treatment for Ischemic Heart Failure) trial began enrolling patients with coronary artery disease and HF in the spring of 2002. The goal of this study is to determine whether a benefit over medical therapy can be found for coronary revascularization and whether this benefit can be enhanced by ventricular restoration surgery.

4.3.1.4.7. Nesiritide. Natriuretic peptides are novel compounds that promote diuresis and natriuresis, have vasodilatory properties, lead to an indirect increase in cardiac output, and suppress neurohormonal activation; they have been approved for use in the management of acute HF (459–461). In this setting, nesiritide has been shown to improve symptoms of acute HF, but the effect on morbidity and mortality has not been clear from available clinical trials (462,463).

They are currently under investigation as adjunctive therapy, administered on an intermittent outpatient basis, for advanced chronic HF. Unless a definitive study does demonstrate safety and efficacy, intermittent or continuous outpatient infusion of nesiritide and other natriuretic peptides is not recommended.

4.3.1.5. Drugs and Interventions of Unproved Value and Not Recommended

4.3.1.5.1. Nutritional Supplements and Hormonal Therapies. Patients with HF, particularly those treated with diuretics, may become deficient in vitamins and micronutrients. Several nutritional supplements (e.g., coenzyme Q10, carnitine, taurine, and antioxidants) and hormonal therapies (e.g., growth hormone or thyroid hormone) have been proposed for the treatment of HF (464–469). Aside from replenishment of documented deficiencies, randomized trials have failed to demonstrate benefit for routine vitamin, nutritional, or hormonal supplementation (470).

In most data or other literature regarding nutraceuticals, there are issues, including outcomes analyses, adverse effects, and drug–nutraceutical interactions, that remain unresolved. No clinical trials have demonstrated improved...
survival in users of nutritional or hormonal therapy. Some studies have suggested a possible effect for coenzyme Q10 in reduced hospitalization rates, dyspnea, and edema in patients with HF, but these benefits have not been seen uniformly (471–474). Because of possible adverse effects and drug interactions of nutritional supplements and their widespread use, physicians caring for patients with HF should routinely inquire about their use. Until more data are available, nutritional supplements or hormonal therapies are not recommended for the treatment of HF. The ACCF Clinical Expert Consensus Document on Integrating Complementary Medicine Into Cardiovascular Medicine (475) will provide more details regarding cardiovascular issues with alternative and complementary medicine.

Most patients with HF due to reduced LVEF respond favorably to pharmacological and nonpharmacological treatments and enjoy a good quality of life and enhanced survival; however, some patients do not improve or experience rapid recurrence of symptoms despite optimal medical therapy. Such patients characteristically have symptoms at rest or on minimal exertion, including profound fatigue; cannot perform most activities of daily living; frequently have evidence of cardiac cachexia; and typically require repeated and/or prolonged hospitalizations for intensive management. These individuals represent the most advanced stage of HF and should be considered for specialized treatment strategies, such as mechanical circulatory support, continuous intravenous positive inotropic therapy, referral for cardiac transplantation, or hospice care.

Before a patient is considered to have refractory HF, physicians should confirm the accuracy of the diagnosis, identify any contributing conditions, and ensure that all conventional medical strategies have been optimally employed. Measures listed as Class I recommendations for patients in stages A, B, and C are also appropriate for patients in end-stage HF (also see Section 5). When no further therapies are appropriate, careful discussion of the prognosis and options for end-of-life care should be initiated (see Section 7).

4.3.1.5.2. INTERMITTENT INTRAVENOUS POSITIVE INOTROPIC THERAPY (UPDATED). Although positive inotropic agents can improve cardiac performance during short- and long-term therapy (476,477), long-term oral therapy with these drugs has not improved symptoms or clinical status (233,478–488) and has been associated with a significant increase in mortality, especially in patients with advanced HF (486,489–494). Despite these data, some physicians have proposed that the regularly scheduled intermittent use of intravenous positive inotropic drugs (e.g., dobutamine or milrinone) in a supervised outpatient setting might be associated with some clinical benefits (59–61).

However, there has been little experience with intermittent home infusions of positive inotropic agents in controlled clinical trials. Nearly all of the available data are derived from open-label and uncontrolled studies or from trials that have compared one inotropic agent with another, without a placebo group (59–61,495). Most trials have been small and short in duration and thus have not been able to provide reliable information about the effect of treatment on the risk of serious cardiac events. Much, if not all, of the benefit seen in these uncontrolled reports may have been related to the increased surveillance of the patient’s status and intensification of concomitant therapy and not to the use of positive inotropic agents. Only 1 placebo-controlled trial of intermittent intravenous positive inotropic therapy has been published (496), and its findings are consistent with the results of long-term studies with continuous oral positive inotropic therapy in HF (e.g., with milrinone), which showed little efficacy and were terminated early because of an increased risk of death.

Given the lack of evidence to support their efficacy and concerns about their toxicity, intermittent infusions of positive inotropic agents (whether at home, in an outpatient clinic, or in a short-stay unit) should not be used in the long-term treatment of HF, even in its advanced stages. The use of continuous infusions of positive inotropic agents as palliative therapy in patients with end-stage disease (Stage D) is discussed later in this document (226,227).

4.3.2. Patients With Heart Failure and Normal Left Ventricular Ejection Fraction

Recommendations

CLASS I

1. Physicians should control systolic and diastolic hypertension in patients with HF and normal LVEF, in accordance with published guidelines. *(Level of Evidence: A)*

2. Physicians should control ventricular rate in patients with HF and normal LVEF and atrial fibrillation. *(Level of Evidence: C)*

3. Physicians should use diuretics to control pulmonary congestion and peripheral edema in patients with HF and normal LVEF. *(Level of Evidence: C)*

CLASS IIa

1. Coronary revascularization is reasonable in patients with HF and normal LVEF and coronary artery disease in whom symptomatic or demonstrable myocardial ischemia is judged to be having an adverse effect on cardiac function. *(Level of Evidence: C)*

CLASS IIb

1. Restoration and maintenance of sinus rhythm in patients with atrial fibrillation and HF and normal LVEF might be useful to improve symptoms. *(Level of Evidence: C)*

2. The use of beta-adrenergic blocking agents, ACEIs, ARBs, or calcium antagonists in patients with HF and normal LVEF and controlled hypertension might be effective to minimize symptoms of HF. *(Level of Evidence: C)*

3. The usefulness of digitalis to minimize symptoms of HF in patients with HF and normal LVEF is not well established. *(Level of Evidence: C)*

Table 8 summarizes the recommendations for treatment of patients with HF and normal LVEF.
The use of beta-adrenergic blocking agents, restoration and maintenance of sinus rhythm

Physicians should control systolic and diastolic hypertension, in accordance with published guidelines.

Physicians should control ventricular rate in patients with atrial fibrillation.

Physicians should use diuretics to control pulmonary congestion and peripheral edema.

Physicians might recommend coronary revascularization in patients with coronary artery disease in whom symptomatic or demonstrable myocardial ischemia is judged to have an adverse effect on cardiac function.

Restoration and maintenance of sinus rhythm in patients with atrial fibrillation might be useful to improve symptoms.

The use of beta-adrenergic blocking agents, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, or calcium antagonists in patients with controlled hypertension might be effective to minimize symptoms of heart failure.

The use of digoxin to minimize symptoms of heart failure might be considered.

Table 8. Recommendations for Treatment of Patients With Heart Failure and Normal Left Ventricular Ejection Fraction

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Class</th>
<th>Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physicians should control systolic and diastolic hypertension</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Physicians should control ventricular rate in patients with atrial fibrillation</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Physicians should use diuretics to control pulmonary congestion and peripheral edema</td>
<td>I</td>
<td>C</td>
</tr>
<tr>
<td>Physicians might recommend coronary revascularization in patients with coronary artery disease in whom symptomatic or demonstrable myocardial ischemia is judged to have an adverse effect on cardiac function.</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>Restoration and maintenance of sinus rhythm in patients with atrial fibrillation might be useful to improve symptoms.</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>The use of beta-adrenergic blocking agents, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, or calcium antagonists in patients with controlled hypertension might be effective to minimize symptoms of heart failure.</td>
<td>IIb</td>
<td>C</td>
</tr>
<tr>
<td>The use of digoxin to minimize symptoms of heart failure might be considered.</td>
<td>IIb</td>
<td>C</td>
</tr>
</tbody>
</table>

4.3.2.1. IDENTIFICATION OF PATIENTS

For many years, the syndrome of HF was considered to be synonymous with diminished contractility of the LV, or reduced LVEF. Over the past few years, however, there has been a growing appreciation that a large number of patients with HF have a relatively normal EF, or preserved EF. The pathophysiology of this type of HF has been reviewed in depth (497), and a large, randomized study that enrolled patients with HF and normal EF has been completed (527). Currently, a number of investigators are seeking to clarify the epidemiology, clinical characteristics, and prognosis of patients with HF and a normal LVEF (498).

Depending on the criteria used to delineate HF and the accepted threshold for defining preserved LVEF, it is estimated that as many as 20% to 60% of patients with HF have a relatively normal EF, or preserved EF. The pathophysiology of this type of HF has been reviewed in depth (497), and a large, randomized study that enrolled patients with HF and normal EF has been completed (527). Currently, a number of investigators are seeking to clarify the epidemiology, clinical characteristics, and prognosis of patients with HF and a normal LVEF (498).

Several recognized myocardial disorders are associated with HF and reduced LVEF, as well as those with preserved LVEF. Several recognized myocardial disorders are associated with HF and a normal LVEF, including restrictive cardiomyopathy, obstructive and nonobstructive hypertrophic cardiomyopathy, and infiltrative cardiomyopathies. The vast majority of patients with HF and relatively preserved LVEF have a history of hypertension, and many, if not most, of these patients have evidence of LVH on echocardiography. However, some patients who present with HF and relatively preserved LVEF have no identifiable myocardial pathology. Because these patients usually present with symptoms typical of HF, they should be classified as Stage C. Indeed, most patients will have some detectable structural abnormality of the heart, including LVH, atrial dilation, mitral annular calcification, aortic sclerosis, or myocardial scar.

Heart failure associated with relatively preserved LVEF is most prevalent among elderly women, most of whom have hypertension, diabetes mellitus, or both and often coronary artery disease or atrial fibrillation as well (500). This observation may be related to the fact that aging has a greater impact on ventricular filling characteristics than on EF (505). Aging is associated with decreases in the elastic properties of the heart and great vessels, which leads to an increase in systolic blood pressure and an increase in myocardial stiffness. The rate of ventricular filling decreases in part because of structural changes in the heart (due to fibrosis) and because of a decline in relaxation and compliance. These deleterious effects on diastolic function are exacerbated by a decrease in beta-adrenergic receptor density and a decline in peripheral vasodilator capacity, both of which are characteristic of elderly patients. In addition, elderly patients commonly have associated disorders (e.g., coronary artery disease, diabetes mellitus, aortic stenosis, atrial fibrillation, or obesity), which can adversely affect the diastolic properties of the heart or decrease the time available for ventricular filling. There may also be sex-specific responses to hypertension and diabetes mellitus that make women more susceptible than men to the cumulative effects of aging on diastolic function (506).

A number of recent investigations have focused on the differences between HF with preserved EF and that with low LVEF (48,49,498). Myocardial infarction or other evidence of atherosclerotic disease appears to be less common in HF with normal LVEF, but hypertension is at least as common in this subgroup. The morbidity and mortality associated with HF and a relatively preserved LVEF may be nearly as profound as that with low LVEF; frequent and repeated hospitalizations characterize the patient with HF and a normal LVEF (507,508). Most, but not all, series of patients with HF and relatively preserved LVEF have shown better survival than is seen in patients with HF and reduced LVEF; however, these comparisons are difficult to interpret, because it is difficult to be certain that such series
4.3.2.2. Diagnosis

There have been several proposed criteria by which clinicians and investigators may define HF with a relatively preserved LVEF (509–512). In general, a definitive diagnosis can be made when the rate of ventricular relaxation is slowed; this physiological abnormality is characteristically associated with the finding of an elevated LV filling pressure in a patient with normal LV volumes and contractility. In practice, the diagnosis is generally based on the finding of typical symptoms and signs of HF in a patient who is shown to have a normal LVEF and no valvular abnormalities (aortic stenosis or mitral regurgitation, for example) on echocardiography. Every effort should be made to exclude other possible explanations or disorders that may present in a similar manner (503,513) (Table 9).

Noninvasive methods (especially those that rely on Doppler echocardiography) have been developed to assist in the diagnosis of HF with normal LVEF, but these tests have significant limitations, because cardiac filling patterns are readily altered by nonspecific and transient changes in loading conditions in the heart and by aging, changes in heart rate, or the presence of mitral regurgitation (514–520). The analysis of BNP levels in association with echocardiographic filling patterns can improve diagnostic accuracy. For example, a normal BNP level along with completely normal diastolic end-filling parameters makes HF much less likely; however, HF does remain a strictly clinical diagnosis (521).

4.3.2.3. Principles of Treatment

In contrast to the treatment of HF due to reduced LVEF, few clinical trials are available to guide the management of patients with HF and relatively preserved LVEF. Although controlled studies have been performed with digitalis, ACEIs, ARBs, beta blockers, and calcium channel blockers in patients with HF who had a relatively preserved LVEF, for the most part, these trials have been small or have produced inconclusive results (134,241,522–524). Nevertheless, many patients with HF and normal LVEF are treated with these drugs because of the presence of comorbid conditions (i.e., atrial fibrillation, hypertension, diabetes mellitus, and coronary artery disease). A large, randomized trial recently completed included patients with HF and normal LVEF, which demonstrates that studies in such patients can be accomplished (327). In that trial, the addition of candesartan to the treatment regimen for patients with symptomatic HF and relatively preserved LVEF significantly reduced morbidity but did not reach the primary endpoint.

In the absence of other controlled clinical trials, the management of these patients is based on the control of physiological factors (blood pressure, heart rate, blood volume, and myocardial ischemia) that are known to exert important effects on ventricular relaxation (503). Likewise, diseases that are known to cause HF with normal LVEF should be treated, such as coronary artery disease, hypertension, or aortic stenosis. Clinically, it seems reasonable to target symptom reduction, principally by reducing cardiac filling pressures at rest and during exertion (497). Recommendations regarding the use of anticoagulation and antiarrhythmic agents apply to all patients with HF, irrespective of LVEF.

Potential Treatment Strategies. Hypertension exerts a deleterious effect on ventricular function by causing both structural and functional changes in the heart. Increases in systolic blood pressure have been shown to slow myocardial relaxation (525), and the resulting hypertrophy may adversely affect passive chamber stiffness. Physicians should make every effort to control both systolic and diastolic hypertension with effective antihypertensive therapy in accordance with published guidelines (78). Consideration should at least be given to achieving target levels of blood pressure lower than those recommended for patients with uncomplicated hypertension (e.g., less than 130 mm Hg systolic and less than 80 mm Hg diastolic) (78,524,526). Because myocardial ischemia can impair ventricular relaxation, coronary revascularization should be considered in patients with coronary artery disease in whom symptomatic or demonstrable myocardial ischemia is believed to be exerting a deleterious effect on cardiac function (for more information, see the ACC/AHA 2004 Guideline Update for Coronary Artery Bypass Graft Surgery [16]).

Because tachycardia can shorten the time available for ventricular filling and coronary perfusion, drugs that slow the heart rate or the ventricular response to atrial arrhythmias (e.g., beta blockers, digoxin, and some calcium channel blockers) can provide symptomatic relief in patients with HF and normal LVEF. Similarly, patients with HF and preserved LVEF may be particularly sensitive to loss of atrial kick, which supports a potential benefit for restoration of atrial kick.
of sinus rhythm in patients with atrial fibrillation. The benefits of restoring sinus rhythm in these individuals are less clear, and the large trials of rhythm versus rate control in atrial fibrillation published recently have excluded patients with HF. Moreover, the presence of systolic or diastolic dysfunction may diminish the efficacy and enhance the toxicity of drugs used to achieve and maintain sinus rhythm.

Circulating blood volume is a major determinant of ventricular filling pressure, and the use of diuretics may improve breathlessness in patients with HF and normal LVEF as well as those with reduced LVEF. Other possible agents used to reduce diastolic filling pressures are nitrates or agents that block neurohumoral activation. Hypotension may be a significant problem in this population, especially in the very elderly, because they can be quite sensitive to preload reduction.

4.4. Patients With Refractory End-Stage Heart Failure (Stage D) (UPDATED)

The role of intermittent infusions as effective treatment for advanced HF has been further clarified by an additional multicenter trial (Table 4).

Recommendations

CLASS I

1. Meticulous identification and control of fluid retention is recommended in patients with refractory end-stage HF (279,282,527–532). (Level of Evidence: B)
2. Referral for cardiac transplantation in potentially eligible patients is recommended for patients with refractory end-stage HF (533). (Level of Evidence: B)
3. Referral of patients with refractory end-stage HF to a HF program with expertise in the management of refractory HF is useful (534–537). (Level of Evidence: A)
4. Options for end-of-life care should be discussed with the patient and family when severe symptoms in patients with refractory end-stage HF persist despite application of all recommended therapies. (Level of Evidence: C)
5. Patients with refractory end-stage HF and implantable defibrillators should receive information about the option to inactivate the defibrillator. (Level of Evidence: C)

CLASS IIa

1. Consideration of an LV assist device as permanent or “destination” therapy is reasonable in highly selected patients with refractory end-stage HF and an estimated 1-year mortality over 50% with medical therapy (538,539). (Level of Evidence: B)

CLASS IIb

1. Pulmonary artery catheter placement may be reasonable to guide therapy in patients with refractory end-stage HF and persistently severe symptoms (533,540). (Level of Evidence: C)
2. The effectiveness of mitral valve repair or replacement is not well established for severe secondary mitral regurgitation in refractory end-stage HF (141 541,542). (Level of Evidence: C)
3. Continuous intravenous infusion of a positive inotropic agent may be considered for palliation of symptoms in patients with refractory end-stage HF (543,544). (Level of Evidence: C)

CLASS III

1. Partial left ventriculectomy is not recommended in patients with nonischemic cardiomyopathy and refractory end-stage HF. (Level of Evidence: C)
2. Routine intermittent infusions of vasoactive and positive inotropic agents are not recommended for patients with refractory end-stage HF (545,546). (Level of Evidence: A)

Most patients with HF due to reduced LVEF respond favorably to pharmacological and nonpharmacological treatments and enjoy a good quality of life and enhanced survival; however, some patients do not improve or experience rapid recurrence of symptoms despite optimal medical therapy. Such patients characteristically have symptoms at rest or on minimal exertion, including profound fatigue; cannot perform most activities of daily living; frequently have evidence of cardiac cachexia; and typically require repeated and/or prolonged hospitalizations for intensive management. These individuals represent the most advanced stage of HF and should be considered for specialized treatment strategies, such as mechanical circulatory support, continuous intravenous positive inotropic therapy, referral for cardiac transplantation, or hospice care.

Before a patient is considered to have refractory HF, physicians should confirm the accuracy of the diagnosis, identify any contributing conditions, and ensure that all conventional medical strategies have been optimally employed. Measures listed as Class I recommendations for patients in stages A, B, and C are also appropriate for patients in end-stage HF (see also Section 5). When no further therapies are appropriate, careful discussion of the prognosis and options for end-of-life care should be initiated (see Section 7).

4.4.1. Management of Fluid Status

Many patients with advanced HF have symptoms that are related to the retention of salt and water and thus will respond favorably to interventions designed to restore sodium balance. Hence, a critical step in the successful management of end-stage HF is the recognition and meticulous control of fluid retention.

In most patients with chronic HF, volume overload can be treated adequately with low doses of a loop diuretic combined with moderate dietary sodium restriction; however, as HF advances, the accompanying decline in renal perfusion can limit the ability of the kidneys to respond to diuretic therapy (263,275). In such patients, the control of fluid retention may require progressive increments in the dose of a loop diuretic and frequently the addition of a second diuretic that has a complementary mode of action (e.g., metolazone) (283,285). If the patient continues to exhibit evidence of volume overload despite these measures, hospitalization is generally required for further adjustment of therapy (282,527), possibly including intravenous dopamine or dobutamine. This strategy can elicit a marked increase in urine volume, but such a diuresis is frequently
accompanied by worsening azotemia, especially if patients are also being treated with an ACEI. Provided that renal function stabilizes, small or moderate elevations of blood urea nitrogen and serum creatinine should not lead to efforts to minimize the intensity of therapy; however, if the degree of renal dysfunction is severe or if the edema becomes resistant to treatment, ultrafiltration or hemofiltration may be needed to achieve adequate control of fluid retention (547,548). The use of such mechanical methods of fluid removal can produce meaningful clinical benefits in patients with diuretic-resistant HF and may restore responsiveness to conventional doses of loop diuretics.

In general, patients should not be discharged from the hospital until a stable and effective diuretic regimen is established, and ideally, not until euvolemia is achieved. Patients who are sent home before these goals are reached are at high risk of recurrence of fluid retention and early readmission (549), because unresolved edema may itself attenuate the response to diuretics (278–280). Once euvolemia is achieved, the patient’s dry weight can be defined and used as a continuing target for the adjustment of diuretic doses. Many patients are able to modify their own diuretic regimen in response to changes in weight that exceed a predefined range. The restriction of dietary sodium (to 2 g daily or less) can greatly assist in the maintenance of volume balance.

Patients with persistent or recurrent fluid retention despite sodium restriction and high-dose diuretic use may benefit from review of fluid intake and restriction to 2 liters daily. The ongoing control of fluid retention may be enhanced by enrollment in an HF program, which can provide the close surveillance and education needed for the early recognition and treatment of volume overload (258–261).

4.4.2. Utilization of Neurohormonal Inhibitors

Controlled trials suggest that patients with advanced HF respond favorably to treatment with both ACEIs and beta blockers in a manner similar to those with mild to moderate disease (155,158,162–165,297,298,300–302,305,310–321,336–343,550). However, because neurohormonal mechanisms play an important role in the support of circulatory homeostasis as HF progresses, neurohormonal antagonism may be less well tolerated by patients with severe symptoms than by patients with mild symptoms. Patients who are at the end stage of their disease are at particular risk of developing hypotension and renal insufficiency after the administration of an ACEI and of experiencing worsening HF after treatment with a beta blocker. As a result, patients with refractory HF may tolerate only small doses of these neurohormonal antagonists or may not tolerate them at all.

Consequently, physicians should exercise great care when considering the use of both ACEIs and beta blockers in patients with refractory HF. Treatment with either type of drug should not be initiated in patients who have systolic blood pressures less than 80 mm Hg or who have signs of peripheral hypoperfusion. In addition, patients should not be started on a beta blocker if they have significant fluid retention or if they recently required treatment with an intravenous positive inotropic agent. Treatment with an ACEI or beta blocker should be initiated in very low doses, and patients should be monitored closely for signs or symptoms of intolerance. If low doses are tolerated, further dosage increments may be considered but may not be tolerated. However, clinical trials with lisinopril and carvedilol suggest that even low doses of these drugs may provide important benefits (174,551).

Alternative pharmacological treatments may be considered for patients who cannot tolerate ACEIs or beta-blockers. A combination of nitrates and hydralazine has been reported to have favorable effects on survival in patients with mild to moderate symptoms who were not taking an ACEI or a beta blocker (238), but the utility of this vasodilator combination in patients with end-stage disease who are being given these neurohormonal antagonists remains unknown. In addition, many patients experience headaches or gastrointestinal distress with these direct-acting vasodilators, which can prevent patients from undergoing long-term treatment. Spironolactone has been reported to prolong life and reduce the risk of hospitalization for HF in patients with advanced disease (256); however, the evidence supporting the use of the drug has been derived in patients who have preserved renal function, and the drug can produce dangerous hyperkalemia in patients with impaired renal function. Finally, although ARBs (325) are frequently considered as alternatives to ACEIs because of the low incidence of cough and angioedema with these medications, it is not clear that ARBs are as effective as ACEIs, and they are as likely as ACEIs to produce hypotension or renal insufficiency (297,552).

4.4.3. Intravenous Peripheral Vasodilators and Positive Inotropic Agents (UPDATED)

Patients with refractory HF are hospitalized frequently for clinical deterioration, and during such admissions, they commonly receive infusions of both positive inotropic agents (dobutamine, dopamine, or milrinone) and vasodilator drugs (nitroglycerin, nitroprusside, or nesiritide) in an effort to improve cardiac performance, facilitate diuresis, and promote clinical stability. Some physicians have advocated the placement of pulmonary artery catheters in patients with refractory HF, with the goal of obtaining hemodynamic measurements that might be used to guide the selection and titration of therapeutic agents (540). However, the logic of this approach has been questioned, because many useful drugs for HF produce benefits by mechanisms that cannot be evaluated by measuring their short-term hemodynamic effects (352,553). Regardless of whether invasive hemodynamic monitoring is used, once the clinical status of the patient has stabilized, every effort should be made to devise an oral regimen that can maintain symptomatic improvement and reduce the subsequent risk.
of deterioration. Assessment of the adequacy and tolerability of orally based strategies may necessitate observation in the hospital for at least 48 hours after the infusions are discontinued (554).

Patients who cannot be weaned from intravenous to oral therapy despite repeated attempts may require placement of an indwelling intravenous catheter to allow for the continuous infusion of dobutamine or milrinone or, as has been used more recently, nesiritide. Such a strategy is commonly used in patients who are awaiting cardiac transplantation, but it may also be used in the outpatient setting in patients who otherwise cannot be discharged from the hospital. The decision to continue intravenous infusions at home should not be made until all alternative attempts to achieve stability have failed repeatedly, because such an approach can present a major burden to the family and health services and may ultimately increase the risk of death. However, continuous intravenous support may provide palliation of symptoms as part of an overall plan to allow the patient to die with comfort at home (543,544). The use of continuous intravenous support to allow hospital discharge should be distinguished from the intermittent administration of infusions of such agents to patients who have been successfully weaned from inotropic support (536). Intermittent outpatient infusions of either vasoactive drugs such as nesiritide or positive inotropic drugs have not shown to improve symptoms or survival in patients with advanced HF (536,545,546).

4.4.4. Mechanical and Surgical Strategies

Cardiac transplantation is currently the only established surgical approach to the treatment of refractory HF, but it is available to fewer than 2500 patients in the United States each year (555,556). Current indications for cardiac transplantation focus on the identification of patients with severe functional impairment or dependence on intravenous inotropic agents (Table 10). Less common indications for cardiac transplantation include recurrent life-threatening ventricular arrhythmias or angina that is refractory to all currently available treatments (557).

Alternative surgical and mechanical approaches for the treatment of end-stage HF are under development. Clinical improvement has been reported after mitral valve repair or replacement in patients who have a clinically important degree of mitral regurgitation that is secondary to LV dilatation (141). However, no controlled studies have evaluated the effects of this procedure on ventricular function, clinical status, or survival. One recent single-center report of a nonrandomized series of patients considered appropriate candidates for mitral valve repair did not demonstrate a survival advantage (541).

Although both cardiomyoplasty and left ventriculocectomy (Batista procedure) at one time generated considerable excitement as potential surgical approaches to the treatment of refractory HF (558,559), these procedures failed to result in clinical improvement and were associated with a high risk of death (560). A variant of the aneurysmectomy procedure is now being developed for the management of patients with ischemic cardiomyopathy (458), but its role in the management of HF remains to be defined. None of the current surgical reconstruction techniques offer “rescue therapy” to patients with critical hemodynamic compromise.

The use of mechanical circulatory assist devices in end-stage HF is an area of intense investigation. Extracorporeal devices can be used for short-term circulatory support in patients who are expected to recover from a major cardiac insult (e.g., myocardial ischemia, postcardiotomy shock, or fulminant myocarditis). Left ventricular assist devices provide similar degrees of hemodynamic support; many are implantable and thus allow for long-term support, patient ambulation, and hospital discharge (561). Most clinical experience with these devices has been derived from their use in patients being “bridged” to transplant. The completion of the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) trial investigated the use of these devices as permanent or “destination” therapy in selected non-transplant-eligible patients.

This trial enrolled 129 patients, for whom 2-year survival was 23% in the 68 patients treated with the device and 8% in the 61 patients who received medical therapy (562). Device-related adverse events were numerous and included bleeding, infection, thromboembolic events, and device failure. This trial established the efficacy of device therapy for end-stage HF. Improvements in newer generations of devices will hopefully permit even further prolongation of survival. Presently, destination device therapy is anticipated to benefit those patients predicted to have a 1-year survival of less than 50%. One such group could be the population of non-transplant-eligible patients requiring continuous survival in patients with advanced HF (536,545,546).

Table 10. Indications for Cardiac Transplantation

<table>
<thead>
<tr>
<th>Absolute Indications in Appropriate Patients</th>
<th>Relative Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>For hemodynamic compromise due to HF</td>
<td>Peak VO₂ 11 to 14 mL per kg per minute (or 55% predicted) and major limitation of the patient’s daily activities</td>
</tr>
<tr>
<td>• Refractory cardiogenic shock</td>
<td>Recurrent unstable ischemia not amenable to other intervention</td>
</tr>
<tr>
<td>• Documented dependence on IV inotropic support to maintain adequate organ perfusion</td>
<td>Recurrent instability of fluid balance/renal function not due to patient noncompliance with medical regimen</td>
</tr>
<tr>
<td>• Peak VO₂ less than 10 mL per kg per minute with achievement of anaerobic metabolism</td>
<td>Insufficient Indications</td>
</tr>
<tr>
<td>Severe symptoms of ischemia that consistently limit routine activity and are not amenable to coronary artery bypass surgery or percutaneous coronary intervention</td>
<td>Low left ventricular ejection fraction</td>
</tr>
<tr>
<td>Recurrent symptomatic ventricular arrhythmias refractory to all therapeutic modalities</td>
<td>History of functional class III or IV symptoms of HF</td>
</tr>
<tr>
<td>HF indicates heart failure; IV, intravenous; and VO₂, oxygen consumption per unit time.</td>
<td></td>
</tr>
</tbody>
</table>

HF indicates heart failure; IV, intravenous; and VO₂, oxygen consumption per unit time.
intravenous inotropic infusions. Some reports have suggested that prolonged mechanical decompression of the failing heart may occasionally be followed by sufficient recovery of myocardial function to allow explantation of the device (563). Improvements in ventricular mechanics, myocardial energetics, histology, and cell signaling have been reported with LV assist device support. However, the frequency and duration of myocardial recovery have been variable (564), and sufficient recovery to permit device explantation is rare except in a few patients with acute onset of HF and the absence of coronary artery disease. Coupling of device therapy with cell transplantation and a variety of angiogenesis or myocardial growth factors are approaches planned for future investigation.

Many patients with HF are members of subpopulations who are likely to exhibit unique responses that accelerate the development or progression of HF or complicate the management of HF.

4.5. The Hospitalized Patient (NEW)

Recommendations

CLASS I

1. The diagnosis of HF is primarily based on signs and symptoms derived from a thorough history and physical examination. Clinicians should determine the following:
 a. adequacy of systemic perfusion;
 b. volume status;
 c. the contribution of precipitating factors and/or comorbidities;
 d. if the heart failure is new onset or an exacerbation of chronic disease; and
 e. whether it is associated with preserved ejection fraction. Chest radiographs, electrocardiogram, and echocardiography are key tests in this assessment. (*Level of Evidence: C*)

2. Concentrations of B-type natriuretic peptide (BNP) or N-terminal pro-B-type natriuretic peptide (NT-proBNP) should be measured in patients being evaluated for dyspnea in which the contribution of HF is not known. Final diagnosis requires interpreting these results in the context of all available clinical data and ought not to be considered a stand-alone test (565,566). (*Level of Evidence: A*)

3. Acute coronary syndrome precipitating HF hospitalization should be promptly identified by electrocardiogram and cardiac troponin testing, and treated as appropriate to the overall condition and prognosis of the patient. (*Level of Evidence: C*)

4. It is recommended that the following common potential precipitating factors for acute HF be identified as recognition of these comorbidities is critical to guide therapy:
 a. acute coronary syndromes/coronary ischemia;
 b. severe hypertension;
 c. atrial and ventricular arrhythmias;
 d. infections;
 e. pulmonary emboli;
 f. renal failure; and
 g. medical or dietary noncompliance. (*Level of Evidence: C*)

5. Oxygen therapy should be administered to relieve symptoms related to hypoxemia. (*Level of Evidence: C*)

6. Whether the diagnosis of HF is new or chronic, patients who present with rapid decomposition and hypoperfusion associated with decreasing urine output and other manifestations of shock are critically ill and rapid intervention should be used to improve systemic perfusion. (*Level of Evidence: C*)

7. Patients admitted with HF and with evidence of significant fluid overload should be treated with intravenous loop diuretics. Therapy should begin in the emergency department or outpatient clinic without delay, as early intervention may be associated with better outcomes for patients hospitalized with decompensated HF (32,567,568). (*Level of Evidence: B*) If patients are already receiving loop diuretic therapy, the initial intravenous dose should equal or exceed their chronic oral daily dose. Urine output and signs and symptoms of congestion should be serially assessed, and diuretic dose should be titrated according to relieve symptoms and to reduce extracellular fluid volume excess. (*Level of Evidence: C*)

8. Effect of HF treatment should be monitored with careful measurement of fluid intake and output; vital signs; body weight, determined at the same time each day; clinical signs (supine and standing) and symptoms of systemic perfusion and congestion. Daily serum electrolytes, urea nitrogen, and creatinine concentrations should be measured during the use of IV diuretics or active titration of HF medications. (*Level of Evidence: C*)

9. When diuresis is inadequate to relieve congestion, as evidenced by clinical evaluation, the diuretic regimen should be intensified using either:
 a. higher doses of loop diuretics;
 b. addition of a second diuretic (such as metolazone, spironolactone, or intravenous chlorothiazide); or
 c. continuous infusion of a loop diuretic. (*Level of Evidence: C*)

10. In patients with clinical evidence of hypotension associated with hypoperfusion and obvious evidence of elevated cardiac filling pressures (e.g., elevated jugular venous pressure; elevated pulmonary artery wedge pressure), intravenous inotropic or vasopressor drugs should be administered to maintain systemic perfusion and preserve end-organ performance while more definitive therapy is considered. (*Level of Evidence: C*)

11. Invasive hemodynamic monitoring should be performed to guide therapy in patients who are in respiratory distress or with clinical evidence of impaired perfusion in whom the adequacy or excess of intracardiac filling pressures cannot be determined from clinical assessment. (*Level of Evidence: C*)

12. Medications should be reconciled in every patient and adjusted as appropriate on admission to and discharge from the hospital. (*Level of Evidence: C*)

13. In patients with reduced ejection fraction experiencing a symptomatic exacerbation of HF requiring hospitalization during chronic maintenance treatment with oral therapies known to improve outcomes, particularly ACEIs or ARBs and beta-blocker therapy, it is recommended that these therapies be continued in most patients in the absence of hemodynamic instability or contraindications. (*Level of Evidence: C*)

14. In patients hospitalized with HF with reduced ejection fraction not treated with oral therapies known to improve outcomes, particularly ACEIs or ARBs and beta-blocker therapy, initiation of these therapies is recommended in stable patients prior to hospital discharge (569,570). (*Level of Evidence: B*)

15. Initiation of beta-blocker therapy is recommended after optimization of volume status and successful discontinuation of intravenous diuretics, vasodilators, and inotropic agents. Beta-blocker therapy should be initiated at a low dose and only in stable patients. Particular caution should be used when initiating beta
blockers in patients who have required inotropes during their hospital course (569, 570). (Level of Evidence: B)

16. In all patients hospitalized with HF, both with preserved (see Section 4.3.2, Patients With Heart Failure and Normal Left Ventricular Ejection Fraction) and low EF, transition should be made from intravenous to oral diuretic therapy with careful attention to oral diuretic dosing and monitoring of electrolytes. With all medication changes, the patient should be monitored for supine and upright hypotension, and worsening renal function and HF signs/symptoms. (Level of Evidence: C)

17. Comprehensive written discharge instructions for all patients with a hospitalization for HF and their caregivers is strongly recommended, with special emphasis on the following 6 aspects of care; diet; discharge medications, with a special focus on adherence, persistence, and uptitration to recommended doses of ACEI/ARB and beta-blocker medication; activity level; follow-up appointments; daily weight monitoring; and what to do if HF symptoms worsen. (Level of Evidence: C)

18. Postdischarge systems of care, if available, should be used to facilitate the transition to effective outpatient care for patients hospitalized with HF (215, 571–577). (Level of Evidence: B)

CLASS IIa

1. When patients present with acute HF and known or suspected acute myocardial ischemia due to occlusive coronary disease, especially when there are signs and symptoms of inadequate systemic perfusion, urgent cardiac catheterization and revascularization is reasonable where it is likely to prolong meaningful survival. (Level of Evidence: C)

2. In patients with evidence of severely symptomatic fluid overload in the absence of systemic hypotension, vasodilators such as intravenous nitroglycerin, nitroprusside or nesiritide can be beneficial when added to diuretics and/or in those who do not respond to diuretics alone. (Level of Evidence: C)

3. Invasive hemodynamic monitoring can be useful for carefully selected patients with acute HF who have persistent symptoms despite empiric adjustment of standard therapies, and
 a. whose fluid status, perfusion, or systemic or pulmonary vascular resistances are uncertain;
 b. whose systolic pressure remains low, or is associated with symptoms, despite initial therapy;
 c. whose renal function is worsening with therapy;
 d. who require parenteral vasoactive agents; or
 e. who may need consideration for advanced device therapy or transplantation. (Level of Evidence: C)

4. Ultrafiltration is reasonable for patients with refractory congestion not responding to medical therapy (578). (Level of Evidence: B)

CLASS IIb

1. Intravenous inotropic drugs such as dopamine, dobutamine or milrinone might be reasonable for those patients presenting with documented severe systolic dysfunction, low blood pressure and evidence of low cardiac output, with or without congestion, to maintain systemic perfusion and preserve end-organ performance. (Level of Evidence: C)

CLASS III

1. Use of parenteral inotropes in normotensive patients with acute decompensated HF without evidence of decreased organ perfusion is not recommended (579). (Level of Evidence: B)

2. Routine use of invasive hemodynamic monitoring in normotensive patients with acute decompensated HF and congestion with symptomatic response to diuretics and vasodilators is not recommended (580). (Level of Evidence: B)

A patient may develop acute or progressive symptoms of HF and require hospitalization. In general, there are 3 clinical profiles that describe the hospitalized patient with HF: 1) the patient with volume overload, manifested by pulmonary and/or systemic congestion, frequently precipitated by an acute increase in chronic hypertension; 2) the patient with profound depression of cardiac output manifested by hypotension, renal insufficiency, and/or a shock syndrome, and 3) the patient with signs and symptoms of both fluid overload and shock. Irrespective of the presenting clinical picture, there have been a confusing variety of terms in the literature used to describe these patients, including acute HF syndrome, acute decompensated HF, or cardiogenic shock. However different these 3 groups of patients may be in outcome, they can all be characterized as having a change in HF signs and symptoms resulting in a need for urgent therapy. Patients with HF and preserved LVEF (see Section 4.3.2, Patients With Heart Failure and Normal Left Ventricular Ejection Fraction) are just as likely to be admitted to hospital as those with HF and low LVEF (581).

Admission with HF is often triggered by a concomitant cardiovascular event such as a symptomatic tachyarrhythmia, unstable coronary syndrome, or a cerebrovascular event; often the admission is related to medical or dietary noncompliance. The threshold for admission may also be lowered when HF exacerbation is accompanied with a noncardiac condition such as pneumonia or newly diagnosed anemia. Indeed, it is important to note that concurrent conditions and comorbidities such as coronary artery disease, hypertension, valvular heart disease, arrhythmias, renal dysfunction, diabetes, thromboembolism, and anemia are often present, more so than has usually been described in clinical trials, and may precipitate or contribute to the pathophysiology of the syndrome. Unfortunately, the precipitating event leading to hospitalization is not always readily apparent.

Common Factors That Precipitate Hospitalization for Heart Failure

- Noncompliance with medical regimen, sodium and/or fluid restriction
- Acute myocardial ischemia
- Uncorrected high blood pressure
- Atrial fibrillation and other arrhythmias
- Recent addition of negative inotropic drugs (e.g., verapamil, nifedipine, diltiazem, beta blockers)
- Pulmonary embolus
- Nonsteroidal anti-inflammatory drugs
- Excessive alcohol or illicit drug use
- Endocrine abnormalities (e.g., diabetes mellitus, hypothyroidism, hyperthyroidism)
- Concurrent infections (e.g., pneumonia, viral illnesses)
HF hospitalizations account for a substantial portion of the overall costs of caring for patients with HF and may be associated with a staggering degree of morbidity and mortality, particularly in the elderly population. It is evident that the prognosis after an index hospitalization for HF is ominous, with a 50% rate of readmission at 6 months and a 25% to 35% incidence of death at 12 months (582–586). Indeed, many HF trials now incorporate the need for hospitalization as an important endpoint with which to evaluate a new therapy; government agencies and insurance companies are increasingly interested in understanding the frequency of repeat HF hospitalizations. Thus, it is important to outline what should occur in the hospital for the HF patient requiring therapy. The scope of these recommendations are based on evidence from the few available randomized trials evaluating management strategies in the acute decompensated HF patient (461,578–580,587), analyses of large registries, and consensus opinion. Additional and more comprehensive information on this subject may be found in the guidelines from the Heart Failure Society of America and the European Society of Cardiology (588,589,589a).

4.5.1. Diagnostic Strategies

The diagnosis of HF in the hospitalized patient should be based primarily on signs and symptoms, as discussed in Section 3.1., Initial Evaluation of Patients. Clinicians need to determine as accurately and as quickly as possible 1) the volume status of the patient, 2) the adequacy of circulatory support or perfusion, and 3) the role or presence of precipitating factors and/or comorbidities. In the patient with previously established HF, efforts should likewise be directed toward understanding what has caused the apparent acute worsening of clinical symptoms. Many of the steps in this investigation are identical to those used in the initial evaluation of HF (see Sections 3.1.3, Evaluation of the Cause of Heart Failure and 3.2, Ongoing Evaluation of Patients). When the diagnosis of HF is uncertain, determination of plasma BNP or NT-proBNP concentration should be considered in patients being evaluated for dyspnea who have signs and symptoms compatible with HF. The natriuretic peptide concentration should not be interpreted in isolation but in the context of all available clinical data bearing on the diagnosis of HF.

An important cause of worsening HF, and for new-onset HF, is an acute MI. Because many patients admitted with acute HF have coronary artery disease, troponins are typically evaluated at admission for acute exacerbation. Actual criteria for an acute coronary event that may indicate the need for further intervention may be present in up to 20% of patients (590,591). However, many other patients may have low levels of detectable troponins not meeting criteria for an acute ischemic event but typical of chronic HF with an acute exacerbation (592). Registry data have suggested that the use of coronary angiography is low for patients hospitalized with decompensated HF and opportunities to diagnose important coronary artery disease may be missed. Symptoms of HF or cardiogenic shock associated with an ischemic event are covered in other guidelines (10,593) and are beyond the scope of this update. For the patient with newly discovered HF, clinicians should be aware of the important role of coronary artery disease in causing HF and should be certain that coronary structure and function are well delineated (see Section 3.1.2, Identification of a Structural and Functional Abnormality) while simultaneously beginning treatment. Coronary visualization may be an important part of the evaluation of patients hospitalized with HF.

Often, patients with chronic HF are admitted with acute decompensation from a number of possible precipitating causes. Clinicians should carefully review the patient’s maintenance HF medications and decide whether adjustments should be made as a result of the hospitalization. The large majority of patients with HF admitted to the hospital, especially those with concomitant hypertension, should have their oral therapy continued, or even uptitrated, during hospitalization. It is important to note that it has been shown that continuation of beta blockers for most patients is well tolerated and results in better outcomes (569,570). Withholding of or reduction in beta-blocker therapy should be considered only in patients hospitalized after recent initiation or increase in beta-blocker therapy or with marked volume overload. Patients admitted with worsening azotemia should be considered for a reduction in or temporary discontinuation of their ACEIs, ARBs, and/or aldosterone antagonists until renal function improves. Patients with marked volume overload will require intravenous diuretic therapy with uptitration of diuretic dose and/or addition of synergistic diuretic agents. It should be noted that uptitration of ACEIs or beta blockers during decompensation may reduce the efficacy of the acute interventions to relieve congestion. Although it is important to ensure that evidence-based medications are instituted prior to the patient leaving the hospital, it is equally as critical to reassess medications on admission and to adjust their administration in light of the worsening HF.

4.5.2. Treatment in the Hospital

4.5.2.1. Diuretics: The Patient with Volume Overload

Patients admitted with evidence of significant fluid overload should initially be treated with loop diuretics, usually given intravenously. Therapy for this compelling presentation of HF should begin in the emergency department and should be initiated without delay. Early intervention has been associated with better outcomes for patients hospitalized with decompensated HF (594,595). After admission to the hospital, patients should be carefully monitored in accordance with the severity of their symptoms and the results of initial findings on the physical examination and laboratory assessment. Careful and frequent serial evaluation of the patient is important primarily to assess volume status (see Section 3.2.2, Assessment of Volume Status) and adequacy of circulatory support. Laboratory parameters are likewise
necessary to judge efficacy of treatment (see Sections 3.1.3.2, Laboratory Testing, and 3.2.3, Laboratory Assessment). Monitoring of daily weight, supine and standing vital signs, fluid input, and output is a necessary part of daily management; assessment of daily electrolytes and renal function should be done while intravenous diuretics or active HF medication titration is being undertaken.

Intravenous loop diuretics have the potential to reduce glomerular filtration rate (GFR), further worsen neurohumoral activation, and produce electrolyte disturbances. Thus, although the use of diuretics may result in the effective relief of symptoms, their impact on mortality has not been well studied. Diuretics should be administered at doses sufficient to produce a rate of diuresis that will optimize volume status and relieve signs and symptoms of congestion without inducing an excessively rapid reduction in intravascular volume, which could result in hypotension, renal dysfunction, or both (see Sections 4.3.1.2.1, Diuretics, and 4.4.1, Management of Fluid Status). Because loop diuretics have a relatively short half-life, sodium reabsorption in the tubules will occur once the tubular concentration of the diuretics declines. Therefore, strictly limiting sodium intake and dosing the diuretic multiple times per day will enhance effectiveness of the diuresis (275–279,596–598).

Some patients may present with congestion and moderate to severe renal dysfunction. The response to diuretics may be significantly blunted, requiring higher initial doses. In many cases, reduction of fluid overload may improve not only congestion but also renal dysfunction, particularly if significant venous congestion is reduced (599).

Clinical experience suggests it is difficult to determine whether congestion has been adequately treated in many patients, and registry data have confirmed that patients are frequently discharged after a net weight loss of only a few pounds. Although patients may rapidly improve symptomatically, they may remain hemodynamically compromised. Unfortunately, the routine use of serial natriuretic peptide measurement (BNP or NT-proBNP) or even a Swan–Ganz catheter to monitor hemodynamics has not been shown to be helpful in improving the outcomes of the hospitalized patient with HF. Nevertheless, careful evaluation of all physical findings, laboratory parameters, weight change, and net fluid change should be considered before discharge planning is commenced.

When a patient with congestion fails to respond to initial doses of intravenous diuretics, several options may be considered. Efforts should be taken to make certain that, indeed, congestion persists and that another hemodynamic profile or perhaps another disease process is not evident. This is particularly important for the patient with progressive renal insufficiency. If there is substantial doubt about the fluid status of the patient, HF experts suggest that it is an appropriate time for a formal hemodynamic assessment of ventricular filling pressures and cardiac output, typically done with a right heart catheterization. If volume overload is confirmed, the dose of the loop diuretic should be initially increased to ensure that adequate drug levels reach the kidney. If this is inadequate, a second type of diuretic, typically a thiazide (metolazone or intravenous chlorothiazide) or spironolactone, can be added to improve diuretic responsiveness. As a third strategy, continuous infusion of the loop diuretic may be considered. By continuous delivery of the diuretic to the nephron, rebound resorption occurring during the time blood levels of diuretic are low is avoided and ototoxicity risk may actually be reduced (see Sections 4.3.1.2.1, Diuretics, and 4.4.1, Management of Fluid Status) (279,280,282–286,598,600,601). If all diuretic strategies are unsuccessful, ultrafiltration or another renal replacement strategy may be reasonable. Ultrafiltration moves water and small- to medium-weight solutes across a semi-permeable membrane to reduce volume overload. Because the electrolyte concentration is similar to plasma, relatively more sodium can be removed than by diuretics (529,578,602–604). Consultation with a kidney specialist may be appropriate before opting for any mechanical strategy to affect diuresis.

4.5.2.2. VASODILATORS

There are a number of clinical scenarios whereby the addition of vasodilators to the HF regimen of the hospitalized patient might be appropriate. For patients with adequate blood pressure and ongoing congestion not sufficiently responsive to diuretics and standard oral therapy (e.g., maintenance of prior HF medications, if applicable), intravenous vasodilators such as nitroprusside, nitroglycerin, or nesiritide may be added to the treatment regimen. Regardless of the agent used, the clinician should make certain that intravascular volume is, in fact, expanded and that the patient’s blood pressure can tolerate the addition of the vasodilating drug.

Intravenous nitroglycerin, primarily through venodilation effects, lowers preload and may help to more rapidly reduce pulmonary congestion. Patients with HF and hypertension, coronary ischemia, or significant mitral regurgitation are often cited as ideal candidates for the use of intravenous nitroglycerin. However, tachyphylaxis to nitroglycerin may develop rather quickly and up to 20% of those with HF may develop resistance to even high doses (605–607). Sodium nitroprusside is a balanced preload-reducing venodilator and afterload-reducing arteriodilator that also dilates the pulmonary vasculature. Data demonstrating efficacy are limited, and invasive hemodynamic blood pressure monitoring is typically required. Nitroprusside has the potential for producing marked hypotension and is usually used in the intensive care setting as well; longer infusions of the drug have been associated with thiocyanate toxicity, particularly in the setting of renal insufficiency. Nitroprusside is potentially of value in severely congested patients with hypertension or severe mitral valve regurgitation complicating LV dysfunction. Nesiritide (human BNP) reduces LV filling pressure but has variable effects on cardiac output, urinary output, and sodium excretion. The severity of dyspnea is
reduced more rapidly compared to diuretics alone. Because nesiritide has a longer effective half-life than nitroglycerin or nitroprusside, side effects such as hypotension may persist longer. Conservative dosing of the drug (i.e., no bolus) and use of only the recommended doses may reduce complications. Adverse renal consequences with nesiritide have been suggested; careful monitoring of renal function is mandatory (459,461–463,608–610). The effects of nesiritide on mortality remain uncertain and active clinical investigation is ongoing.

The role of intravenous vasodilators for the patient hospitalized with HF can not be generalized. The goals of HF therapy with vasodilators, in the absence of more definitive data, include a more rapid resolution of congestive symptoms; relief of anginal symptoms while awaiting coronary intervention; control of hypertension complicating HF; and, in conjunction with ongoing hemodynamic monitoring while the intravenous drug is administered, improvement of hemodynamic abnormalities prior to instituting oral HF medications.

4.5.2.3. INOTROPES

Patients presenting with either predominantly low output syndrome (e.g., symptomatic hypotension) or combined congestion and low output may be considered for intravenous inotropes such as dopamine, dobutamine, and milrinone. These agents may help relieve symptoms due to poor perfusion and preserve end-organ function in patients with severe systolic dysfunction and dilated cardiomyopathy. Inotropic agents are of greatest value in patients with relative hypotension and intolerance or no response to vasodilators and diuretics. Clinicians should be cautioned again that the use of these drugs portends a very poor prognosis for their patients; a thorough hemodynamic assessment must be undertaken to ensure that the low output syndrome is responsible for the presenting clinical signs and symptoms. Likewise, clinicians should not use a specific blood pressure value that might or might not mean hypotension, to dictate the use of inotropic agents. Rather, a depressed blood pressure associated with signs of poor cardiac output or hypoperfusion (e.g., cold clammy skin, cool extremities, decreased urine output, altered mentation) should prompt a consideration for more aggressive intravenous therapy. Dobutamine requires the beta-receptor for its inotropic effects, while milrinone does not. This may be a significant consideration for patients already maintained on beta-blocking drugs. Furthermore, milrinone has vasodilating properties for both the systemic circulation and the pulmonary circulation. Despite these considerations, there is no evidence of benefit for routine use of inotropic support in patients presenting with acute HF due to congestion only (579,611–613). Indeed, data from several studies suggest an increase in adverse outcomes when inotropes are used. Thus, inotropes should be confined to carefully selected patients with low blood pressure and reduced cardiac output who can have blood pressure and heart rhythm monitored closely (see Section 4.4.3, Intravenous Peripheral Vasodilators and Positive Inotropic Agents).

Routine invasive hemodynamic monitoring is not indicated for most patients hospitalized with symptoms of worsening HF. Recent evaluations of the use of right heart catheterization to improve outcomes have been essentially neutral with regard to overall benefit (580,614). However, hemodynamic monitoring should be strongly considered in patients whose volume and filling pressures are uncertain or who are refractory to initial therapy, particularly in those whose filling pressures and cardiac output are unclear. Patients with clinically significant hypotension (systolic blood pressure typically less than 90 mm Hg or symptomatic low systolic blood pressure) and/or worsening renal function during initial therapy might also benefit. Patients being considered for cardiac transplantation or placement of a mechanical circulatory support device are also candidates for complete right heart catheterization, a necessary part of the initial evaluation (see Section 4.4.4, Mechanical and Surgical Strategies). Invasive hemodynamic monitoring should be performed in patients with 1) presumed cardiogenic shock requiring escalating pressor therapy and consideration of mechanical support; 2) severe clinical decompensation in which therapy is limited by uncertainty regarding relative contributions of elevated filling pressures, hypoperfusion, and vascular tone; 3) apparent dependence on intravenous inotropic infusions after initial clinical improvement; or 4) persistent severe symptoms despite adjustment of recommended therapies. This reinforces the concept that right heart catheterization is best reserved for those situations where a specific clinical or therapeutic question needs to be addressed.

4.5.2.4. OTHER CONSIDERATIONS

Other treatment or diagnostic strategies may be necessary for individual patients after stabilization, particularly related to the underlying cause of the acute event. Considerations are similar to those previously discussed in Section 3.1.3, Evaluation of the Cause of Heart Failure. The patient hospitalized with HF is at increased risk for thromboembolic complications and deep venous thrombosis and should receive prophylactic anticoagulation with either intravenous unfractionated heparin or subcutaneous preparations of unfractionated or low-molecular-weight heparin, unless contraindicated (615).

As the hospitalized patient becomes more clinically stable and volume status normalizes, oral HF therapy should be initiated or reintroduced (see Sections 4.3.1, Patients With Reduced Left Ventricular Ejection Fraction, and 4.3.2, Patients With Heart Failure and Normal Left Ventricular Ejection Fraction). Particular caution should be used when initiating beta blockers in patients who have required inotropes during their hospital course or when initiating ACEIs in those patients who have experienced marked azotemia. During additional hospital days, the patient should be fully transitioned off all intravenous therapy, and oral therapy should be adjusted and maximized. The clinical
team should provide further education about HF to both the patient and family. The treating clinicians should also reassess overall prognosis once current functional status and precipitating causes of the hospitalization have been determined. The appropriateness of discussion about advanced therapy or end-of-life preferences should also be considered (see Sections 3.2.4, Assessment of Prognosis, and 7, End-of-Life Considerations). On discharge, the patient, the family, and the patient’s primary physician should be aware and supportive of the follow-up plans.

4.5.3. The Hospital Discharge

To ensure safe, high-quality, and efficient care for patients following hospitalization for HF, the consistent use of clinical practice guidelines developed by the ACCF, the AHA, and the Heart Failure Society of America should be promoted during and after the hospital stay. One critical performance measure for care coordination and transition is that of written discharge instructions or educational material given to patient and/or caregiver at discharge to home or during the hospital stay addressing all of the following: activity level, diet, discharge medications, follow-up appointment, weight monitoring, and what to do if symptoms worsen (616). Education of HF patients and their families is critical and often complex. Failure of these patients to understand how best to comply with physician’s and other healthcare providers’ instructions is often a cause of HF exacerbation leading to subsequent hospital readmission.

Large registries of hospitalized HF patients suggest that many patients are discharged before optimal volume status is achieved, or sent home without the benefit of life-saving therapies such as ACE/ARB and beta-blocker medications. Among hospitals providing care for patients with HF, there is significant individual variability in conformity to quality-of-care indicators and clinical outcomes and a substantial gap in overall performance (617). Patients are discharged without adequate control of their blood pressure or the ventricular response to atrial fibrillation. Often, the treating clinician fails to appreciate the severity of the HF process or delays diagnostic testing until the patient is seen as an outpatient. These problems, and others, may account for the high rate of HF rehospitalizations seen in the United States.

It is, therefore, incumbent on healthcare professionals to be certain that patients and their families have an understanding of the causes of HF, prognosis, therapy, dietary restrictions, activity, importance of compliance, and signs and symptoms of recurrent HF. Thorough discharge planning that includes a special emphasis on ensuring compliance with an evidence-based medication regimen (571) is associated with improved patient outcomes (572,618,619).

Several studies have examined the effect of providing more intensive delivery of discharge instructions coupled tightly with subsequent well-coordinated follow-up care for patients hospitalized with HF, many with positive results (215,573–575). Comprehensive discharge planning plus postdischarge support for older patients with HF can significantly reduce readmission rates and may improve health outcomes such as survival and quality of life without increasing costs. A meta-analysis (576) of 18 studies representing data from 8 countries randomized 3304 older inpatients with HF to comprehensive discharge planning plus postdischarge support or usual care. During a mean observation period of 8 months, fewer intervention patients were readmitted compared with controls. Analysis of studies reporting secondary outcomes found a trend toward lower all-cause mortality, length of stay, hospital costs, and improvement in quality-of-life scores for patients assigned to an intervention compared with usual care. One other important study (577) focusing on hospital discharge for patients with HF demonstrated that the addition of a 1-hour, nurse educator–delivered teaching session at the time of hospital discharge using standardized instructions resulted in improved clinical outcomes, increased self-care measure adherence, and reduced cost of care. Patients receiving the education intervention had a lower risk of rehospitalization or death and lower costs of care.

The importance of patient safety for all patients hospitalized with HF cannot be overemphasized. Meaningful evidence has facilitated a much better understanding of the systems changes necessary to achieve safer care. This includes the adoption by all U.S. hospitals of a standardized set of 30 “Safe Practices” endorsed by the National Quality Forum (620), which overlap in many ways with the National Patient Safety Goals espoused by The Joint Commission (621). Improved communication between physicians and nurses, medication reconciliation, transitions between care settings, and consistent documentation are examples of patient safety standards that should be ensured for patients discharged from the hospital with HF. Care information, especially changes in orders and new diagnostic information, must be transmitted in a timely and clearly understandable form to all of the patient’s current healthcare providers who need that information to provide follow-up care.

Hospitalization is in and of itself an independent risk factor for shortened survival in patients with chronic HF. Hence, appropriate levels of symptomatic relief, support, and palliative care for patients with chronic HF should be addressed as an ongoing key component of their plan of care, especially when hospitalized with acute decompensation (622). Fortunately, most US hospitals today have direct access to palliative care services (623). Good evidence exists for the critical importance of delivering comprehensive supportive care to these patients, including the assessment and treatment of dyspnea and physiological issues including anxiety and depression (624,625,625a,625b).

5. Treatment of Special Populations (UPDATED)

The recommendations for hydralazine/isosorbide dinitrate in a specific population have been clarified in this section and in a
previous section (223,236), based on a recent multicenter trial (Table 6).

Recommendations

CLASS I

1. The combination of a fixed dose of isosorbide dinitrate and hydralazine to a standard medical regimen for HF, including ACEIs and beta blockers, is recommended in order to improve outcomes for patients self-described as African Americans, with NYHA functional class III or IV HF. Others may benefit similarly, but this has not yet been tested (223,236). (Level of Evidence: A)

2. Groups of patients including (a) high-risk ethnic minority groups (e.g., blacks), (b) groups underrepresented in clinical trials, and (c) any groups believed to be underserved should, in the absence of specific evidence to direct otherwise, have clinical screening and therapy in a manner identical to that applied to the broader population (626,627). (Level of Evidence: B)

3. It is recommended that evidence-based therapy for HF be used in the elderly patient, with individualized consideration of the elderly patient’s altered ability to metabolize or tolerate standard medications. (Level of Evidence: C)

5.2. Ethnic Considerations

Race is an imprecise concept that has largely become a social and political construct, with more limited biological significance (636). The concept of racial “minorities” may be relevant to large populations, especially those in clinical trials, but is clearly not a concept applicable in many demographic areas and clinical practices. However, it is useful to review epidemiological and clinical trial evidence to raise awareness of potential areas of concern and guide socioeconomic and clinical remedies. This has become especially pertinent in the evaluation of HF as it affects blacks, although much more information is also needed about the effects of current and new therapies in the Hispanic population. Heart failure is a major public health problem in blacks. Heart failure is more common in the black population, affecting approximately 3% of all black adults. This reflects a 50% higher incidence of HF in the black population than is seen in the general population.

Black patients develop symptoms of HF at an earlier average age than nonblacks, possibly because black patients are more likely to have hypertension and diabetes mellitus than nonblacks and because they more frequently exhibit sodium retention, ventricular hypertrophy, and vascular injury. Once the diagnosis is made, HF progresses more rapidly in black than in white patients, as evidenced by a higher risk of initial and recurrent hospitalizations (637–639). This risk cannot be explained by the presence of epicardial coronary artery disease or documented MI, both of which are less common in black than in nonblack patients with HF. The data are not clear as to whether a definitive increase in mortality risk exists (637–639).

The literature is mixed on whether blacks with HF more frequently receive suboptimal inpatient care for their HF (640,641). However, deficiencies in cardiovascular risk factor evaluation and disease detection and treatment as well as in access to quality outpatient care may contribute to the increased incidence and morbidity of blacks with HF (642–644).

Blacks and other racial minorities with HF are underrepresented in most clinical trials of HF, which compromises the extrapolation of results from major clinical trials to ethnic subgroup populations. To date, there are no data to suggest that any significant treatment variance from standard care for HF should be acceptable in any particular known. Nevertheless, recent studies suggest that sildenafil may produce hemodynamic benefits in patients with coronary artery disease and may act to improve some of the peripheral vascular abnormalities that characterize patients with HF (634). Although patients with HF appear to tolerate short-term administration of the drug without difficulty, sildenafil should not be given to patients taking nitrates, who may experience profound hypotension due to its ability to potentiate the systemic vasodilator effects of drugs that increase intracellular levels of cyclic guanosine monophosphate (635).
Heart failure is particularly common in elderly patients. The prevalence of HF rises from 2% to 3% at age 65 to more than 80% in persons over 80 years of age (653), and HF is the most common reason for hospitalization in elderly persons (654–657). The high prevalence of HF in the elderly may be associated with age-related changes in ventricular function (particularly diastolic function) and to the cumulative effects of hypertension and other chronic risk factors (658–662). In addition, risk factors for HF (e.g., hypertension, diabetes mellitus, and hyperlipidemia) are generally not treated aggressively in the elderly, yet elderly patients commonly take medications that can exacerbate the syndrome of HF (e.g., nonsteroidal anti-inflammatory drugs) (187).

Heart failure in elderly patients is inadequately recognized and treated (662). Both patients and physicians frequently attribute the symptoms of HF to aging, and noninvasive cardiac imaging commonly fails to reveal impaired systolic function because HF with a preserved LVEF is frequently found in the elderly. In addition, some reports suggest that elderly patients may have diminished responses to diuretics, ACEIs, and positive inotropic agents (663–665) compared with younger patients and may experience a higher risk of adverse effects attributable to treatment (630,666–670). Uncertainties regarding the relation of risk to benefit are exacerbated by the fact that very old individuals are poorly represented in large-scale clinical trials designed to evaluate the efficacy and safety of new treatments for HF.

Some multidisciplinary HF programs have been successful in decreasing the rate of readmission and associated morbidity in elderly patients (258,671). Managed care organizations continue to struggle to find improved ways to implement these pathways (672,673).

6. Patients With Heart Failure Who Have Concomitant Disorders (UPDATED)

Recommendations

CLASS I

1. All other recommendations should apply to patients with concomitant disorders unless there are specific exceptions. (Level of Evidence: C)

2. Physicians should control systolic and diastolic hypertension and diabetes mellitus in patients with HF in accordance with recommended guidelines. (Level of Evidence: C)

3. Physicians should use nitrates and beta blockers for the treatment of angina in patients with HF. (Level of Evidence: B)

4. Physicians should recommend coronary revascularization according to recommended guidelines in patients who have both HF and angina. (Level of Evidence: A)

5. Physicians should prescribe anticoagulants in patients with HF who have paroxysmal or persistent atrial fibrillation or a previous thromboembolic event. (Level of Evidence: A)

6. Physicians should control the ventricular response rate in patients with HF and atrial fibrillation with a beta blocker (or amiodarone, if the beta blocker is contraindicated or not tolerated). (Level of Evidence: A)
7. Patients with coronary artery disease and HF should be treated in accordance with recommended guidelines for chronic stable angina. (Level of Evidence: C)

8. Physicians should prescribe antiplatelet agents for prevention of MI and death in patients with HF who have underlying coronary artery disease. (Level of Evidence: B)

CLASS IIa

1. It is reasonable to prescribe digoxin to control the ventricular response rate in patients with HF and atrial fibrillation. (Level of Evidence: A)

2. It is reasonable to prescribe amiodarone to decrease recurrence of atrial arrhythmias and to decrease recurrence of ICD discharge for ventricular arrhythmias. (Level of Evidence: C)

CLASS IIb

1. The usefulness of current strategies to restore and maintain sinus rhythm in patients with HF and atrial fibrillation is not well established. (Level of Evidence: C)

2. The usefulness of anticoagulation is not well established in patients with HF who do not have atrial fibrillation or a previous thromboembolic event. (Level of Evidence: B)

3. The benefit of enhancing erythropoiesis in patients with HF and anemia is not established. (Level of Evidence: C)

CLASS III

1. Class I or III antiarrhythmic drugs are not recommended in patients with HF for the prevention of ventricular arrhythmias. (Level of Evidence: A)

2. The use of antiarrhythmic medication is not indicated as primary treatment for asymptomatic ventricular arrhythmias or to improve survival in patients with HF. (Level of Evidence: A)

Patients with reduced LVEF frequently have associated cardiovascular and noncardiovascular disorders, the course or treatment of which may exacerbate the syndrome of HF. In many patients, appropriate management of these concomitant illnesses may produce symptomatic and prognostic benefits that may be as important as the treatment of the HF condition itself.

6.1. Cardiovascular Disorders

6.1.1. Hypertension, Hyperlipidemia, and Diabetes Mellitus

Approximately two thirds of patients with HF have a past or current history of hypertension, and approximately one third have diabetes mellitus (674). Both disorders can contribute to the development of systolic or diastolic dysfunction (675,676), either directly or by contributing (together with hyperlipidemia) to the development of coronary artery disease (677,678). Long-term treatment of both hypertension and hyperlipidemia decreases the risk of developing HF (72,73,679,680). In a large-scale trial, the administration of a lipid-lowering agent to patients with hypercholesterolemia and a history of MI reduced all-cause mortality and the risk of developing HF (679). In 2 large-scale multicenter studies, the treatment of hypertension reduced both the risk of death and the risk of HF; this was true regardless of whether the elevation of blood pressure was primarily systolic or diastolic (72,73,680). The benefits of lowering blood pressure may be particularly marked in patients with diabetes mellitus (80,82,681).

Heart failure may complicate the management of both hypertension and diabetes mellitus. Some antihypertensive agents should be avoided in patients with HF because of their ability to depress cardiac function or to lead to salt and water retention. In addition, HF itself is associated with resistance to the actions of insulin (682,683), and the resulting hyperinsulinemia may promote both cardiac and vascular hypertrophy (684–686) and thus may hasten the progression of HF. These mechanisms may compound the deleterious effects of accelerated atherosclerosis and altered energy metabolism on cardiac function and may help to explain why diabetic patients with HF have a worse prognosis than their non diabetic counterparts (92).

Thiazolidinediones have been associated with increased peripheral edema and symptomatic HF in patients with underlying risk factors or known cardiovascular disease. The risk of developing edema with thiazolidinediones is dose related and is higher in diabetic patients who are taking concomitant insulin therapy. However, the incidence of thiazolidinedione-related fluid retention is low in patients with NYHA functional class I to II symptoms, in whom these drugs can be administered safely with careful monitoring for fluid retention. Initiation of these drugs is not recommended in patients with NYHA functional class III to IV symptoms of HF. Clinical experience has shown that one side effect of newer oral agents of the thiazolidinedione class is weight gain, which is due in part to fluid retention. This effect may have the potential to precipitate or exacerbate HF in patients with reduced cardiac reserve. Thiazolidinediones probably should be used with caution in such patients (687,688).

Recommendations Concerning Management. Little is known about the benefits of treating hypertension, hypercholesterolemia, or diabetes mellitus in patients with established reduced LVEF and symptoms of HF. The lack of such data is noteworthy, both because the progression of HF is frequently associated with decreases in blood pressure (due to deterioration of cardiac performance) and decreases in serum lipids (due to development of cardiac cachexia) (679) and because the benefits of drugs used to lower blood pressure or blood lipids may be seen only during prolonged periods of treatment (i.e., those that exceed the expected life span of many patients with HF) (72,73,679,680). Nevertheless, it is prudent to manage hypertension, hypercholesterolemia, and diabetes mellitus in patients with HF as if the patients did not have HF. This may be particularly true in patients with HF and preserved LVEF, whose symptoms may respond particularly well to treatments that lower blood pressure (689,690). Renal artery stenosis should be considered in patients with hypertension and HF, because renal artery stenting can treat both conditions.

Drugs that can both control blood pressure and treat HF should be preferred in patients with both conditions; this
includes the use of diuretics, ACEIs, and beta blockers. In contrast, physicians should avoid the use of most calcium channel blockers, because of their cardiodepressant effects, or potent direct-acting vasodilators such as minoxidil, because of their sodium-retaining effects.

The drugs routinely used in the management of HF in nondiabetic patients should be administered to those with diabetes mellitus. Angiotensin converting enzyme inhibitors and beta blockers prevent the progression of HF in diabetic and nondiabetic patients (157,162,691). Physicians should not avoid the use of beta blockers in diabetic patients despite fears that these drugs may mask symptoms of hypoglycemia produced by antidiabetic therapy or may exacerbate glucose intolerance or insulin resistance.

6.1.2. Coronary Artery Disease

Approximately two thirds of patients with HF have underlying coronary artery disease, which may limit exercise tolerance by causing angina pectoris or may lead to further progression of the patient’s underlying coronary artery disease, reduced LVEF, and stable angina (711) (see the ACC/AHA/ACPASIM Guidelines for the Management of Patients With Chronic Stable Angina [712] or the ACC/AHA 2004 Guideline Update for Coronary Artery Bypass Graft Surgery [16]).

Recommendations Concerning Management of Patients Without Angina. In patients with a prior MI but without HF or angina, 4 types of interventions have been used to reduce the risk of reinfarction and death: neurohormonal antagonists such as ACEIs and beta blockers (83,123,124,129); drugs to address dyslipidemia, such as statins; antiplatelet drugs such as aspirin and clopidogrel (310,312); and coronary revascularization (709). In patients who have had an MI and who have HF but not angina, the use of ACEIs and beta blockers can also decrease the risk of reinfarction and death (126–128,713,714), but it is less clear whether such patients benefit from the use of aspirin or revascularization.

Aspirin has been shown to reduce the risk of major ischemic events in patients without HF. The role of aspirin in patients with HF has not been established (709), and concerns have been raised that it may attenuate the hemodynamic and survival benefits of ACEIs (303,306,307). For these reasons, the role of aspirin in preventing ischemic events in patients with chronic HF is controversial (see Section 4.3.1.2.2.1). Alternative antiplatelet agents (e.g., clopidogrel) may not interact adversely with ACEIs (305) and may have superior effects in preventing clinical events (312), but their ability to favorably affect outcomes in HF has not been demonstrated (see Section 4.3.1.2.2.1).

Surgical revascularization has been recommended for a certain subset of patients in other guidelines (715). Some physicians recommend the use of coronary revascularization in patients with HF and coronary artery disease who do not have symptoms of angina. Advocates of this approach have suggested that surgical reperfusion can improve cardiac function and relieve symptoms of HF in patients with myocardium that appears on imaging to be viable but not contracting normally (716–718) and may also reduce the risk of a fatal coronary occlusion in patients with established multivessel disease (717). Despite these theoretical possibilities, however, coronary revascularization has not been shown to improve cardiac function or symptoms or to prevent reinfarction or death in patients with HF and no angina (15,719).

6.1.3. Supraventricular Arrhythmias (UPDATED)

There have been additional trials investigating the appropriate management of atrial fibrillation in patients with HF. The text has been modified to reflect the lessons learned from these trials (see Section 4.3.1, Patients With Reduced Left Ventricular Ejection Fraction). There is also an ACC/AHA/ESC guideline on the management of atrial fibrillation (720).
The course of patients with HF is frequently complicated by supraventricular tachyarrhythmias, which may occur when the myocardial disease process affects the atria or when the atria are distended as a result of pressure or volume overload of the right or left ventricles. The most common treatable atrial arrhythmia is atrial fibrillation, which affects 10% to 30% of patients with chronic HF and is associated with a reduction in exercise capacity and a worse long-term prognosis (721–723).

Supraventricular tachyarrhythmias may exert adverse effects via 4 different mechanisms: 1) the loss of atrial enhancement of ventricular filling may compromise cardiac output; 2) the rapid heart rate may increase demand and decrease coronary perfusion (by shortening ventricular filling time); 3) the rapidity of ventricular response may diminish both cardiac contraction (by aggravating abnormalities of the force-frequency relation) (724,725) and cardiac relaxation (726,727); and 4) the stasis of blood in the fibrillating atria may predispose patients to pulmonary or systemic emboli. In most patients with an ischemic or nonischemic dilated cardiomyopathy, the rapidity of ventricular response is more important than the loss of atrial support, because restoration of sinus rhythm does not result in predictable clinical benefits (728). Rapid supraventricular arrhythmias may actually cause a cardiomyopathy (even in patients without an underlying contractile abnormality) or may exacerbate a cardiomyopathy caused by another disorder (136,137). Hence, the control of ventricular rate and the prevention of thromboembolic events are essential elements of treatment of HF in patients with an underlying supraventricular arrhythmia (729,730). Specific care and initially low doses should be used when beta blockers are instituted to control heart rate in patients with clinical evidence of HF decompensation. The agent previously used in clinical practice to slow the ventricular response in patients with HF and atrial fibrillation is digoxin, but the cardiac glycoside slows atrioventricular conduction more effectively at rest and atrial fibrillation is digoxin, but the cardiac glycoside. Hence, the control of ventricular rate and the prevention of thromboembolic events are essential elements of treatment of HF in patients with an underlying supraventricular arrhythmia (729,730). Specific care and initially low doses should be used when beta blockers are instituted to control heart rate in patients with clinical evidence of HF decompensation. The agent previously used in clinical practice to slow the ventricular response in patients with HF and atrial fibrillation is digoxin, but the cardiac glycoside slows atrioventricular conduction more effectively at rest than during exercise (365,731). Hence, digitalis does not block the excessive exercise-induced tachycardia that may limit the functional capacity of patients with HF (363–365,731). Beta blockers are more effective than digoxin during exercise (363,365) and are preferred because of their favorable effects on the natural history of HF (158,162,164). The combination of digoxin and beta blockers may be more effective than beta blockers alone for rate control. Although both verapamil and diltiazem can also suppress the ventricular response during exercise, they can depress myocardial function and increase the risk of worsening HF, especially in patients with HF and low EF, in whom these drugs should be avoided (703,705). If beta blockers are ineffective or contraindicated in patients with atrial fibrillation and HF, amiodarone may be a useful alternative (732). Atrioventricular nodal ablation may be needed if tachycardia persists despite pharmacological therapy (387). Catheter ablation for pulmonary vein isolation has been most effective in patients without structural heart disease; the benefit for patients with established HF is not known (733–735). Regardless of the intervention used, every effort should be made to reduce the ventricular response to less than 80 to 90 bpm at rest and less than 110 to 130 bpm during moderate exercise. Anticoagulation should be maintained in all patients with HF and a history of atrial fibrillation, regardless of whether sinus rhythm is achieved, because of the high rate of silent recurrence of atrial fibrillation with its attendant embolic risk, unless a contraindication exists (730).

Should patients with HF and atrial fibrillation be converted to and maintained in sinus rhythm? The efficacy and safety of restoring and maintaining sinus rhythm in patients with atrial fibrillation were evaluated in a total of 5032 patients in 4 separate trials (736). Both strategies for the management of atrial fibrillation, either to restore and maintain sinus rhythm by electrical or pharmacologic conversion, or to control ventricular rate in atrial fibrillation, have been shown to have equivalent outcomes. These results were confirmed in 2007 with the conclusion of a large trial of patients with both atrial fibrillation and HF (226,227,730). Most patients revert to atrial fibrillation within a short time unless they are treated with a Class I or III antiarrhythmic drug (721). However, patients with HF are not likely to respond favorably to Class I drugs and may be particularly predisposed to their cardiodepressant and proarrhythmic effects (193,247), which can increase the risk of death (191,192,388). Class III antiarrhythmic agents (e.g., sotalol, dofetilide, and amiodarone) can maintain sinus rhythm in some patients, but treatment with these drugs is associated with an increased risk of organ toxicity (amiodarone) (737,738) and proarrhythmia (dofetilide) (248). Most patients who had thromboembolic events, regardless of the strategy used, were in atrial fibrillation at the time of the event and either were not undergoing anticoagulation therapy or were undergoing therapy at subtherapeutic levels. Thus, it is reasonable to treat HF patients with atrial fibrillation with a strategy of either scrupulous rate control or an attempt at rhythm control.

6.1.4. Prevention of Thromboembolic Events

Patients with chronic HF are at increased risk of thromboembolic events due to stasis of blood in dilated hypokinetic cardiac chambers and in peripheral blood vessels (739,740) and perhaps due to increased activity of procoagulant factors (741). However, in large-scale studies, the risk of thromboembolism in clinically stable patients has been low (1% to 3% per year), even in those with very depressed EFs and echocardiographic evidence of intracardiac thrombi (742–746). These rates are sufficiently low to limit the detectable benefit of anticoagulation in these patients.

In several retrospective analyses, the risk of thromboembolic events was not lower in patients with HF taking warfarin than in patients not treated with antithrombotic drugs (742,744,745). The use of warfarin was associated with a reduction in major cardiovascular events and death in patients with HF in one retrospective analysis but not in
another (747–749). A randomized trial comparing the outcome of patients with HF and low EF assigned to aspirin, warfarin, or clopidogrel was completed recently.

Unfortunately, low enrollment in the trial precluded definitive conclusions about efficacy, but no therapy appeared to be superior. Another trial is currently under way comparing aspirin with warfarin in patients with reduced LVEF and may provide more definitive data upon which to base recommendations.

Recommendations Concerning Management. In the absence of definitive trials, it is not clear how anticoagulants should be prescribed in patients with HF. Despite the lack of supportive data, some physicians prescribe anticoagulants to all patients with markedly depressed EFs and dilated hearts (739). Others would advocate the use of warfarin in patients who are known to harbor a cardiac thrombus (740), even though many thrombi detected by echocardiography do not embolize and many embolic events are probably related to thrombi that are not visualized (293,750). Anticoagulation with warfarin is most justified in patients with HF who have experienced a previous embolic event or who have paroxysmal or persistent atrial fibrillation (730). Anticoagulation should also be considered in patients with underlying disorders that may be associated with an increased thromboembolic risk (e.g., amyloidosis or LV noncompaction) and in patients with familial dilated cardiomyopathy and a history of thromboembolism in first-degree relatives.

6.2. Noncardiovascular Disorders

6.2.1. Patients With Renal Insufficiency

Patients with HF frequently have impaired renal function as a result of poor renal perfusion, intrinsic renal disease, or drugs used to treat HF. Patients with renal hypoperfusion or intrinsic renal disease show an impaired response to diuretics and ACEIs (275,751) and are at increased risk of adverse effects during treatment with digitalis (370). Renal function may worsen during treatment with diuretics or ACEIs (274,527), although the changes produced by these drugs are frequently short-lived, generally asymptomatic, and reversible. Persistent or progressive renal functional impairment often reflects deterioration of the underlying renal disease process and is associated with a poor prognosis (41,752). The symptoms of HF in patients with end-stage renal disease may be exacerbated by an increase in loading conditions produced both by anemia (753) and by fistulas implanted to permit dialysis. In addition, toxic metabolites and abnormalities of phosphate, thyroid, and parathyroid metabolism associated with chronic renal insufficiency can depress myocardial function.

Despite the potential for these adverse interactions, most patients with HF tolerate mild to moderate degrees of functional renal impairment without difficulty. In these individuals, changes in blood urea nitrogen and serum creatinine are generally clinically insignificant and can usually be managed without the withdrawal of drugs needed to slow the progression of HF. However, if the serum creatinine increases to more than 3 mg per dL, the presence of renal insufficiency can severely limit the efficacy and enhance the toxicity of established treatments (275,370,751). In patients with a serum creatinine greater than 5 mg per dL, hemofiltration or dialysis may be needed to control fluid retention, minimize the risk of uremia, and allow the patient to respond to and tolerate the drugs routinely used for the management of HF (548,754).

6.2.2. Patients With Pulmonary Disease

Because dyspnea is the key symptom in both HF and pulmonary disease, it is important to distinguish the 2 diseases and to quantify the relative contribution of cardiac and pulmonary components to the disability of the patient when these disorders coexist. Exercise testing with simultaneous gas exchange or blood gas measurements may be helpful in this regard, particularly when used in conjunction with right heart catheterization (755).

Some drugs used to treat HF can produce or exacerbate pulmonary symptoms. Angiotensin converting enzyme inhibitors can cause a persistent nonproductive cough that can be confused with a respiratory infection, and conversely, ACEIs may be inappropriately stopped in patients with pulmonary causes of cough. Therefore, physicians should seek a pulmonary cause in all patients with HF who complain of cough, whether or not they are taking an ACEI. The cough should be attributed to the ACEI only if respiratory disorders have been excluded and the cough disappears after cessation of ACEI therapy and recurs after reinstatement of treatment. Because the ACEI-related cough does not represent any serious pathology, many patients can be encouraged to tolerate it in view of the important beneficial effects of ACEIs.

Beta blockers can aggravate bronchospastic symptoms in patients with asthma; however, many patients with asymptomatic or mild reactive airways disease tolerate beta-blockers well. Also, most patients with chronic obstructive pulmonary disease do not have a bronchospastic component to their illness and remain reasonable candidates for beta-blockade (756). Of note, both metoprolol tartrate and bisoprolol may lose their beta-1 selectivity when prescribed in patients with asthma; however, many patients with asymptomatic pulmonary disease tolerate beta-blockers well. Also, most patients with chronic obstructive pulmonary disease do not have a bronchospastic component to their illness and remain reasonable candidates for beta-blockade (756). Of note, both metoprolol tartrate and bisoprolol may lose their beta-1 selectivity when prescribed in doses that have been associated with an improvement in survival in patients with HF.

6.2.3. Patients With Cancer

Patients with cancer are particularly predisposed to the development of HF as a result of the cardiotoxic effects of many cancer chemotherapeutic agents, especially the anthracyclines (757), high-dose cyclophosphamide (758–762), and trastuzumab (763). Trastuzumab is a monoclonal antibody recently approved for therapy of metastatic breast cancer (764) that has a significant potential to cause HF, especially when combined with anthracyclines. Mediastinal radiation can also cause acute and chronic injury to the pericardium, myocardium, cardiac valves, and coronary ar-
teries, particularly when used in conjunction with cardio-
toxic chemotherapy (765).

Patients undergoing potentially cardiotoxic treatments
for cancer should be monitored closely for the development
of cardiac dysfunction. Heart failure may appear many
years after anthracycline exposure, particularly in association
with another stress, such as tachycardia. Although noninvasive
assessments of LV function and endomyocardial biopsy
have been advocated by some investigators (766), many
cases escape early detection despite close surveillance.

Dexrazoxane may confer some cardioprotection in pa-
tients undergoing anthracycline-based chemotherapy and
may allow for higher doses of the chemotherapy to be given
(767,768). Heart failure due to chemotherapeutic agents is
managed similarly to HF due to other causes, although it is
not clear whether patients with cancer respond similarly to
patients with other causes of HF. Nevertheless, because
most patients with anthracycline-induced cardiomyopathy
have striking degrees of tachycardia, many experts believe
that beta blockers play a particularly important role in the
management of these patients. Although once thought to
progress inexorably, HF related to chemotherapy often
improves in response to therapy, even when it appears late
after exposure.

6.2.4. Patients With Thyroid Disease

Patients with both hyperthyroidism and hypothyroidism are
prone to develop HF. Special vigilance is required for
patients who are taking amiodarone, who may develop
either hyperthyroidism or hypothyroidism. New atrial fibril-
lation or exacerbation of ventricular arrhythmias should
trigger reevaluation of thyroid status.

6.2.5. Patients With Hepatitis C and Human
Immunodeficiency Virus

Hepatitis C viral infection can be a cause of cardiomyopathy
and myocarditis. It appears that the virus can cause both
dilated cardiomyopathy and hypertrophic cardiomyopathy
(514,515). The relatively high prevalence of this virus in
Japanese populations compared with those in North Amer-
ica and Europe suggests that there may be a genetic
predisposition to this type of viral myocarditis (516,769).
A small study showed that hepatitis C virus myocarditis might
respond favorably to immunosuppressive therapy with pred-
nisone and azathioprine (770,771). Preliminary data also
suggest that this type of myocarditis might respond well to
interferon therapy (515), although there is concern that
interferon can also depress myocardial function.

Human immunodeficiency virus has been recognized as a
probable occasional cause of dilated cardiomyopathy. The
presence of reduced LVEF in patients with HIV infection
appears to correlate with decreased survival (772). Reduced
LVEF is often seen in association with a significantly
reduced CD4 count, although progression of cardiomyopa-
thy does not appear to be related to falling CD4 levels
(773). Drug therapy for HIV with zidovudine has also been
implicated as a cause of cardiomyopathy, possibly through
its effect on cardiac myocyte mitochondrial function (774).
Heart failure in patients with HIV infection may also be
caused or exacerbated by pericardial effusion or pulmonary
hypertension. Interferon-alpha therapy for HIV-related Ka-
posi’s sarcoma has also been associated with reversible
reduction in LVEF. Because of the occurrence of complex
opportunist infections, autoimmune responses to the viral
infection, and drug cardiotoxicity, it is difficult to determine
how therapies influence the development and control of
cardiomyopathy with HIV (775).

6.2.6. Patients With Anemia

Anemia is seldom the cause of HF in the absence of
underlying cardiac disease. To be the sole cause of high-
output HF, anemia must be severe (e.g., hemoglobin levels
less than 5 g per deciliter). On the other hand, patients with
HF frequently have anemia for a variety of reasons. The
severity of anemia may contribute to the increasing severity
of HF. Several studies have demonstrated worse outcomes
in patients with HF and anemia (776,777). It is unclear
whether anemia is the cause of decreased survival or a result
of more severe disease.

Several small studies have suggested benefit from use of
erthropoietin and iron for treatment of mild anemia in HF
(778–780). There is concern, however, that thromboem-
bolic events may be increased. This therapy is undergoing
further investigation.

7. End-of-Life Considerations

Recommendations

CLASS I

1. Ongoing patient and family education regarding prognosis for
 functional capacity and survival is recommended for patients
 with HF at the end of life. (Level of Evidence: C)

2. Patient and family education about options for formulating and
 implementing advance directives and the role of palliative and
 hospice care services with reevaluation for changing clinical
 status is recommended for patients with HF at the end of life.
 (Level of Evidence: C)

3. Discussion is recommended regarding the option of inactivating
 ICDs for patients with HF at the end of life. (Level of Evidence: C)

4. It is important to ensure continuity of medical care between
 inpatient and outpatient settings for patients with HF at the end
 of life. (Level of Evidence: C)

5. Components of hospice care that are appropriate to the relief of
 suffering, including opiates, are recommended and do not pre-
 clude the options for use of inotropes and intravenous diuretics
 for symptom palliation for patients with HF at the end of life.
 (Level of Evidence: C)

6. All professionals working with HF patients should examine
 current end-of-life processes and work toward improvement in
 approaches to palliation and end-of-life care. (Level of Evidence: C)
Although issues surrounding end-of-life care deserve attention for all chronic terminal diseases, several general principles merit particular discussion in the context of chronic HF. Education of both patient and family regarding the expected or anticipated course of illness, final treatment options, and planning should be undertaken before the patient becomes too ill to participate in decisions. Discussions regarding treatment preferences, living wills, and advance directives should encompass a variety of likely contingencies that include responses to a potentially reversible exacerbation of HF, a cardiac arrest, a sudden catastrophic event such as a severe cerebrovascular accident, and worsening of major coexisting noncardiac conditions. In reviewing these issues with families, short-term intervention in anticipation of rapid recovery should be distinguished from prolonged life support without reasonable expectation of a return to good functional capacity.

Most patients hospitalized with severe HF indicate a preference that resuscitation be performed in the event of a cardiopulmonary arrest. In the largest study of patients hospitalized with HF, only 23% stated they did not wish resuscitation, and 40% of these patients subsequently changed their minds after the hospitalization (781). These frequencies are higher than those seen in other chronic diseases (782), perhaps because patients with HF are more likely to experience extended periods of stability with good quality of life after hospitalization for intensive care. Hospitals in the United States are required by the Patient Self-Determination Act (783) to seek and record information regarding advance directives at the time of admission. Yet, when these have not been addressed in advance, forced contemplation of resuscitation options at the time of admission of worsening HF may heighten patient and family anxiety without revealing true preferences (784). The majority of patients with HF who had not discussed resuscitation during hospitalization indicated that they had not desired such an interaction (781). Furthermore, in one study, the impact of resuscitation preferences on in-hospital outcome was minimal even for patients with HF in intensive care, of whom only 4% experienced unexpected cardiac arrests compared with more than 25% of patients in intensive care units who had other chronic illnesses (785).

When the limitations imposed by HF alone or in combination with other severe conditions become intolerable, however, resuscitation may no longer be desired by the patient. At this time, it is important to understand which aspects of further care the patient wishes to forego. In some cases, the patient may want full supportive care while conscious, other than actual resuscitation; in other circumstances, hospitalization may no longer be desired for any intervention. Any decision to forego resuscitation should lead to possible deactivation of the life-saving function of an implanted defibrillation device; the poor functional status of any patient should also influence the decision regarding implantation of such a device in the first place (786). To observe both the intent and the directives of the patient and family, it is highly desirable that outpatient, inpatient, and crisis management be supervised by the same team to diminish the hazards of fragmented care during this period. The patient should be encouraged to choose in advance a person to assume legal authority (i.e., designated power of attorney or healthcare proxy) for healthcare matters when the patient cannot be involved in decisions. That individual should serve as the contact point for the team. Rapid communications with this team will reduce the conflicts and uncertainties that may arise when patients are first seen in an emergent setting by physicians not normally involved in their care. The standing-care plans for each patient need to be quickly accessible to all personnel likely to be involved in the patient’s care. Professionals caring for patients with advanced HF should have realistic expectations for survival and communicate those accurately to patients and families. Also, the professionals should provide realistic recommendations for procedures being done within the final days of life that do not add to the hope of recovery or improvement in life quality. Finally, greater attention and research need to be devoted to the provision of comfort measures in the final days of life, including relief of pain and dyspnea. Hospice services have only recently been extended to patients dying of HF. Originally developed for patients with end-stage cancer, the focus of hospice care has now been expanded to include the relief of symptoms other than pain (787). This is appropriate because the suffering of patients with HF is characteristically linked to symptoms of breathlessness, and thus, compassionate care may require the frequent administration of intravenous diuretics and, in some cases, the continuous infusion of positive inotropic agents rather than only the use of potent analgesics. However, many patients dying of HF do describe pain during the final days (622,788). Physicians caring for these patients should become familiar with the prescription of anxiolytics, sleeping medications, and narcotics to ease distress during the last days.

Traditionally, the utilization of hospice care has required a prediction by a physician of death within 6 months, but this operational policy may be difficult to apply, because healthcare providers are generally unable to accurately predict the end of life in patients with HF. In a large US study on the experience of patients hospitalized in intensive care units with terminal stages of disease, the majority of patients who were identified by broad criteria for hospice care survived the next 6 months despite a prediction to the contrary (789). This discrepancy between predicted and actual survival may be particularly great for patients with HF, which more often than other chronic illnesses is characterized by periods of good quality of life despite the...
approaching end and which is likely to be terminated by sudden death despite a recent remission of symptoms. Current guidelines and policies (790) are being revised to allow patients with HF to benefit from the type of care that can be provided through hospice services.

Ultimately, the decisions regarding when end of life is nearing reflect a complex interaction between objective information and subjective information, emotions, and patient and family readiness. Ideally, these decisions would be made in conjunction with the individual or team most experienced in caring for advanced HF or in collaboration and/or consultation with such an expert. In reality, however, this does not occur often. The writing committee recommends that all those involved with HF care make it a priority to improve recognition of end-stage disease and provide care to patients and families approaching this stage. As we become more familiar with the steps in progression to endstage HF in this era, the current abrupt transition from aggressive intervention to comfort and bereavement care will be softened by a gradual and progressive emphasis on palliation until it dominates the final days of care (788).

8. Implementation of Practice Guidelines

Recommendations

CLASS I

1. Academic detailing or educational outreach visits are useful to facilitate the implementation of practice guidelines. (Level of Evidence: A)

2. Multidisciplinary disease-management programs for patients at high risk for hospital admission or clinical deterioration are recommended to facilitate the implementation of practice guidelines, to attack different barriers to behavioral change, and to reduce the risk of subsequent hospitalization for HF. (Level of Evidence: A)

CLASS IIa

1. Chart audit and feedback of results can be effective to facilitate implementation of practice guidelines. (Level of Evidence: A)

2. The use of reminder systems can be effective to facilitate implementation of practice guidelines. (Level of Evidence: A)

3. The use of performance measures based on practice guidelines may be useful to improve quality of care. (Level of Evidence: B)

4. Statements by and support of local opinion leaders can be helpful to facilitate implementation of practice guidelines. (Level of Evidence: A)

CLASS IIb

1. Multidisciplinary disease-management programs for patients at low risk for hospital admission or clinical deterioration may be considered to facilitate implementation of practice guidelines. (Level of Evidence: B)

CLASS III

1. Dissemination of guidelines without more intensive behavioral change efforts is not useful to facilitate implementation of practice guidelines. (Level of Evidence: A)

2. Basic provider education alone is not useful to facilitate implementation of practice guidelines. (Level of Evidence: A)

Despite the publication of evidence-based guidelines (262,791), the current care of patients with HF remains suboptimal. Numerous studies document underutilization of key processes of care, such as use of ACEIs in patients with decreased systolic function and the measurement of LVEF (630,792,793). The overall quality of inpatient care for HF as judged by both explicit and implicit standards is variable, with lower quality associated with higher readmission rates and mortality (549,794,795). Many HF admissions may be prevented with good outpatient care (796). The literature on implementing practice guidelines for patients with HF can be divided into 3 areas: isolated provider interventions, disease management systems, and use of performance measures.

8.1. Isolated Provider Interventions

A controlled trial has shown that the simple dissemination of an HF guideline followed by written and verbal reminders about recommended actions was unable to change the treatment of HF in the intensive care unit (797). Indeed, an extensive literature has documented how difficult it is to produce appropriate changes in physician behavior (798–800). Basic physician education and passive dissemination of guidelines alone are generally insufficient to sustain quality improvement. Chart audit and feedback of results, reminder systems to consider use of specific medicines or tests, and the use of local opinion leaders have had variable results. Multifactorial interventions that simultaneously attack different barriers to change tend to be more successful than isolated efforts. For example, academic detailing, which involves intensive educational outreach visits that incorporate communication and behavioral change techniques, has been effective and is commonly used by pharmaceutical companies (801). Thus, dissemination of a practice guideline must be accompanied by more intensive educational and behavioral interventions to maximize the chances of improving physician practice patterns.

8.2. Disease-Management Systems

The disease-management approach views HF as a chronic illness that spans the home as well as outpatient and inpatient settings. Most patients have multiple medical, social, and behavioral challenges, and effective care requires a multidisciplinary systems approach that addresses these various difficulties. Heart failure disease-management programs vary in their content, but in general, they include intensive patient education, encouragement of patients to be more aggressive participants in their care, close monitoring of patients through telephone follow-up or home nursing, careful review of medications to improve adherence to evidence-based guidelines, and multidisciplinary care with nurse case management directed by a physician. High-risk patients have usually been chosen for such programs.
Observational studies and randomized controlled trials have shown that disease-management programs can reduce the frequency of hospitalization and can improve quality of life and functional status (261,802). Patients at high risk for clinical deterioration or hospitalization are likely to benefit from disease-management programs and represent those for whom such interventions are most likely to be cost-effective (803). The largest successful randomized controlled trial of disease management targeted elderly patients who had been hospitalized for HF, had a prior history of HF, had 4 or more hospitalizations within 5 years, or had an HF exacerbation caused by an acute MI or uncontrolled hypertension (258). Patients randomized to the disease-management program had significantly fewer hospitalizations and a reduced cost of care compared with patients in the control group. However, it is not clear which elements of disease-management programs are crucial for success. In addition, it is not known whether such interventions are feasible in settings with limited resources and personnel and among diverse patient populations.

8.3. Performance Measures

Performance measures are standards of care for a particular illness or condition that are designed to assess and subsequently improve the quality of medical care. Performance measures are chosen on the basis of the knowledge or assumption that the particular item is linked to improved patient outcomes. In the field of HF, such measures might include documentation of the level of LV function, medications used, or patient education measures. These measures can be used either internally within an organization or publicly to compare the performance of providers, hospitals, and healthcare organizations. In theory, performance measures could improve care by encouraging providers to compete on the basis of quality as opposed to cost, empowering consumers to make informed choices in the marketplace, providing incentives to providers to concentrate on certain diseases or processes of care, and supplying information to aid with internal quality improvement. The evidence is mixed, but some studies indicate that performance measures can improve health outcomes (804).

The ACCF and AHA are collaborating with a variety of organizations to develop and implement performance measures. ACCF/AHA practice guidelines are useful starting points for performance measures, but several considerations apply: 1) ACCF/AHA practice guidelines are designed for improving the care of individual patients. Performance measures are generally used for improving the care of populations of patients. Although significant overlap exists in these goals, performance measures need to take into account additional factors, such as ease of data collection, simplicity of standards, calculation of sufficient numbers of patients for whom the measure would apply, and provision of flexibility for clinically diverse situations. 2) In general, most performance measures should be chosen from Class I and Class III practice guideline recommendations; however, given the additional factors involved in improving the care of populations of patients, Class IIa recommendations may be suitable in selected situations. 3) Opportunities should be given for clinicians to describe why a particular performance measure may not be appropriate for an individual patient.

8.4. Roles of Generalist Physicians and Cardiologists

Insufficient evidence exists to allow for recommendations about the most appropriate roles for generalist physicians and cardiologists in the care of patients with HF. Several studies indicate that primary care physicians as a group have less knowledge about HF and adhere to guidelines less closely than cardiologists (805–807). Some studies have noted better patient outcomes in patients cared for by cardiologists than in those cared for by generalist physicians (808,809), whereas another study reported that cardiologists deliver more costly care that is accompanied by a trend toward improved survival (810). Despite these observations, primary care physicians with knowledge and experience in HF should be able to care for most patients with uncomplicated HF. By contrast, patients who remain symptomatic despite basic medical therapy may benefit from care directed by consulting physicians who have special expertise and training in the care of patients with HF.

Do generalist physicians and cardiologists provide similar levels of care for the noncardiac comorbid conditions frequently present in patients with HF? What is the optimal time for referral to a specialist? What is the most effective system of comanagement of patients by generalists and cardiologists? What is the most cost-effective entry point into a disease-management program? Regardless of the ultimate answers to these questions, all physicians and other healthcare providers must advocate and follow care practices that have been shown to improve patient outcomes. If a physician is not comfortable following a specific recommendation (e.g., the use of beta blockers), then the physician should refer the patient to someone with expertise in HF. A collaborative model in which generalist and specialist physicians work together to optimize the care of patients with HF is likely to be most fruitful.

Staff

American College of Cardiology Foundation

John C. Lewin, MD, Chief Executive Officer
Charlene May, Senior Director, Science and Clinical Policy
Lisa Bradfield, Associate Director, Clinical Policy and Guidelines
Mark D. Stewart, MPH, Associate Director, Evidence-Based Medicine
Sue Keller, BSN, MPH, Senior Specialist, Evidence-Based Medicine
Allison McDougall, Senior Specialist, Practice Guidelines
Erin A. Barrett, Senior Specialist, Clinical Policy and Guidelines
American Heart Association
Nancy Brown, Chief Executive Officer
Gayle R. Whitman, PhD, RN, FAHA, FAAN, Senior Vice President, Office of Science Operations

REFERENCES

60. Leier CV, Binkley PF. Parenteral inotropic support for advanced heart failure. Prog Cardiovasc Dis. 1998;41:207–24.

72. Effects of treatment on morbidity in hypertension. II. Results in patients with diastolic blood pressure averaging 90 through 114 mm Hg. JAMA. 1970;213:1143–52.

669. Ware JE Jr., Bayliss MS, Rogers WH, et al. Differences in 4-year health outcomes for elderly and poor, chronically ill patients treated in HMO and fee-for-service systems. Results from the Medical Outcomes Study. JAMA. 1996;276:1315–27.

APPENDIX 1. AUTHOR RELATIONSHIPS WITH INDUSTRY—ACC/AHA 2005 GUIDELINES FOR THE DIAGNOSIS AND MANAGEMENT OF CHRONIC HEART FAILURE IN THE ADULT

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Research Grant</th>
<th>Speakers’ Bureau</th>
<th>Stock Ownership</th>
<th>Board of Directors</th>
<th>Consultant/Advisory Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. William T. Abraham</td>
<td>Amgen, Biosite, Biotronik, Cardio Dynamics International, Guidant, Medtronic, Myogen, Orqis Medical, Otsuka Maryland Research Institute, Scios, Vasogen, Yamanouchi</td>
<td>GlaxoSmithKline, Guidant, Medtronic, Merck, Pfizer, Scios, St. Jude Medical</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Marshall H. Chin</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Arthur M. Feldman</td>
<td>Amgen, AstraZeneca, GlaxoSmithKline, Guidant, Johnson & Johnson, Medtronic, Pfizer, Scios, Vasomedical</td>
<td>AstraZeneca, GlaxoSmithKline, Guidant, Johnson & Johnson, Medtronic, Vasomedical</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Gary S. Francis</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Theodore G. Ganiats</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Sharon Ann Hunt</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Mariell Jessup</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>ACORN, Medtronic, GlaxoSmithKline</td>
</tr>
<tr>
<td>Dr. Marvin A. Konstam</td>
<td>GlaxoSmithKline</td>
<td>AstraZeneca, GlaxoSmithKline, Merck, Novartis</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca, GlaxoSmithKline, Merck, Novartis</td>
</tr>
<tr>
<td>Dr. Donna M. Mancini</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Keith A. Michl</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. John A. Oates</td>
<td>McNeil, Merck</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>McNeil, Merck</td>
</tr>
<tr>
<td>Dr. Peter S. Rahko</td>
<td>Bristol-Myers Squibb, Myogen, Novartis</td>
<td>Boehringer-Ingelheim, Novartis, Pfizer</td>
<td>None</td>
<td>None</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>Dr. Marc A. Silver</td>
<td>Pfizer</td>
<td>GlaxoSmithKline, Cardiodynamics</td>
<td>None</td>
<td>None</td>
<td>Medtronic, Scios</td>
</tr>
<tr>
<td>Dr. Lynne Warner Stevenson</td>
<td>Medtronic</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Medtronic, Scios</td>
</tr>
<tr>
<td>Dr. Clyde W. Yancy</td>
<td>NitroMed, Scios</td>
<td>GlaxoSmithKline, Medtronic, Novartis, Pfizer, Scios</td>
<td>None</td>
<td>None</td>
<td>GlaxoSmithKline, Medtronic, Scios</td>
</tr>
</tbody>
</table>
APPENDIX 2. PEER REVIEWER RELATIONSHIPS WITH INDUSTRY—ACC/AHA 2005 GUIDELINES FOR THE DIAGNOSIS AND MANAGEMENT OF CHRONIC HEART FAILURE IN THE ADULT

<table>
<thead>
<tr>
<th>Peer Reviewer Name*</th>
<th>Representation</th>
<th>Research Grant</th>
<th>Speakers’ Bureau/ Honoraria</th>
<th>Stock Ownership</th>
<th>Consultant/ Advisory Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Mihai Gheorghiade</td>
<td>Official Reviewer—AHA</td>
<td>GlaxoSmithKline, Otzuka, Sigma Tau</td>
<td>Pfizer</td>
<td>GlaxoSmithKline, Medtronic, Otzuka, Sigma Tau</td>
<td></td>
</tr>
<tr>
<td>Dr. Jonathan L. Halperin</td>
<td>Official Reviewer—ACCF/AHA Task Force Lead Review</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca, Bayer AG, Boehringer Ingelheim, Bristol-Myers Squibb, Sanofi Partnership</td>
<td></td>
</tr>
<tr>
<td>Dr. Jagat Narula</td>
<td>Official Reviewer—AHA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Milton Packer</td>
<td>Official Reviewer—ACCF/AHA</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Ileana L. Pina</td>
<td>Official Reviewer—AHA</td>
<td>Biosite, Centers for Medicare and Medicaid Services, National Institutes of Health, AstraZeneca, GlaxoSmithKline, Novartis, Pfizer</td>
<td>None</td>
<td>AstraZeneca, Food and Drug Administration–Center for Devices and Radiological Health</td>
<td></td>
</tr>
<tr>
<td>Dr. Miguel A. Quinones</td>
<td>Official Reviewer—ACCF Board of Trustees</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Proctor & Gamble</td>
</tr>
<tr>
<td>Dr. Richard F. Wright</td>
<td>Official Reviewer—ACCF Board of Governors</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca, Bristol-Myers Squibb, Novartis, Cardiodynamics, Cardiodynamics, Novartis</td>
<td></td>
</tr>
<tr>
<td>Nancy M. Albert, CNS</td>
<td>Content Reviewer—AHA HF and Transplantation Committee</td>
<td>GlaxoSmithKline, Medtronic, Scios Pharmaceuticals</td>
<td>None</td>
<td>GlaxoSmithKline</td>
<td></td>
</tr>
<tr>
<td>Dr. Jeffrey L. Anderson</td>
<td>Content Reviewer—Individual Review</td>
<td>Johnson & Johnson, Merck, Merck, Merck-Schering-Plough</td>
<td>None</td>
<td>Johnson & Johnson, Merck, Merck, Merck-Schering-Plough</td>
<td></td>
</tr>
<tr>
<td>Dr. Elliott M. Antman</td>
<td>Content Reviewer—Individual Review</td>
<td>AstraZeneca, Biosite, Boehringer Mannheim, Bristol-Myers Squibb, Centocor, CV Therapeutics, Dade, Dendrion, Eli Lilly, Genentech, Merck, Millennium, Sanofi-Aventis, Sunol Molecular</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Malcolm O. Arnold</td>
<td>Content Reviewer—ACCF HF Data Standards Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peer Reviewer Name</td>
<td>Representation</td>
<td>Research Grant</td>
<td>Speakers’ Bureau/ Honoraria</td>
<td>Stock Ownership</td>
<td>Consultant/ Advisory Board</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Dr. John P. Boehmer</td>
<td>Content Reviewer—Individual Review</td>
<td>Acorn Cardiovascular Therapeutics</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Michael R. Bristow</td>
<td>Content Reviewer—Individual Review</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>AstraZeneca, Cardiac Dimensions, Covalent, CVRx, Genzyme, GlaxoSmithKline, Guidant, Merck, Mitsubishi, Myogen, Novartis, Scios Pharmaceuticals</td>
</tr>
<tr>
<td>Dr. Alfred E. Buxton</td>
<td>Content Reviewer—ACCF/AHA Ventricular Arrhythmias and Sudden Cardiac Death Guideline Committee</td>
<td>Guidant, Medtronic, St. Jude</td>
<td>None</td>
<td>None</td>
<td>Medtronic</td>
</tr>
<tr>
<td>Dr. Charles E. Canter</td>
<td>Content Reviewer—AHA Committee on HF and Transplantation</td>
<td>Novartis</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Donald E. Casey</td>
<td>Content Reviewer—ACCF HF Performance Measures Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Michael P. Cinquegrani</td>
<td>Content Reviewer—ACCF HF Data Standards Committee</td>
<td>None</td>
<td>None</td>
<td>Medtronic</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Teresa De Marco</td>
<td>Content Reviewer—Individual Review</td>
<td>Scios Pharmaceuticals</td>
<td>Guidant, Medtronic, Scios Pharmaceuticals</td>
<td>None</td>
<td>Guidant, Medtronic, Scios Pharmaceuticals</td>
</tr>
<tr>
<td>Dr. Gordon A. Ewy</td>
<td>Content Reviewer—ACCF/AHA Coronary Artery Bypass Graft Surgery Guideline Writing Committee</td>
<td>None</td>
<td>AstraZeneca, GlaxoSmithKline, Kos, Merck, Pfizer, Schering-Plough, Wyeth-Ayerst</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Gregg C. Fonarow</td>
<td>Content Reviewer—AHA Quality of Care and Outcomes Committee</td>
<td>Amgen, Biosite, Bristol-Myers Squibb, GlaxoSmithKline, Guidant, Medtronic, Merck, Pfizer, Scios Pharmaceuticals</td>
<td>Amgen, Biosite, Bristol-Myers Squibb, GlaxoSmithKline, Guidant, Medtronic, Merck, Pfizer, Scios Pharmaceuticals</td>
<td>None</td>
<td>Amgen, Biosite, Bristol-Myers Squibb, GlaxoSmithKline, Guidant, Medtronic, Merck, Pfizer, Scios Pharmaceuticals</td>
</tr>
<tr>
<td>Dr. Michael M. Givertz</td>
<td>Content Reviewer—AHA Committee on HF and Transplantation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peer Reviewer Name</td>
<td>Representation</td>
<td>Research Grant</td>
<td>Speakers’ Bureau/Advisory Board</td>
<td>Consultant/Advisory Board</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>Dr. David C. Goff</td>
<td>Content Reviewer—AHA Quality of Care and Outcomes Committee</td>
<td>None</td>
<td>Pfizer</td>
<td>Johnson & Johnson Pfizer</td>
<td></td>
</tr>
<tr>
<td>Dr. Edward P. Havranek</td>
<td>Content Reviewer—ACCF HF Data Standards Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Paul A. Heidenreich</td>
<td>Content Reviewer—ACCF HF Data Standards Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Mark A. Hlatky</td>
<td>Content Reviewer—ACCF HF Performance Measures Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Judith S. Hochman</td>
<td>Content Reviewer—ACCF/AHA ST-Elevation Myocardial Infarction Guideline Writing Committee</td>
<td>Arginox, Eli Lilly</td>
<td>None</td>
<td>None DataScope Diachip Millenium Sanofi-Aventis Proctor & Gamble</td>
<td></td>
</tr>
<tr>
<td>Dr. Mannick L. Kuckin</td>
<td>Content Reviewer—Individual Review</td>
<td>AstraZeneca, Myogen, Vasogen</td>
<td>AstraZeneca Myogen</td>
<td>AstraZeneca</td>
<td></td>
</tr>
<tr>
<td>Dr. Barry M. Massie</td>
<td>Content Reviewer—Individual Review</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Debra Moser, MN, RN</td>
<td>Content Reviewer—AHA Quality of Care and Outcomes Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Erik Magnus Ohman</td>
<td>Content Reviewer—Individual Review</td>
<td>Berlex, Bristol-Myers Squibb/Sanofi, Millenium, Schering-Plough</td>
<td>None</td>
<td>Medtronic</td>
<td></td>
</tr>
<tr>
<td>Dr. Eric N. Prystowsky</td>
<td>Content Reviewer—ACCF/AHA/ESC Atrial Fibrillation</td>
<td>None</td>
<td>None</td>
<td>Guidant</td>
<td></td>
</tr>
<tr>
<td>Dr. Andrew L. Smith</td>
<td>Content Reviewer—ACCF HF Performance Measures Committee</td>
<td>Guidant, Medtronic, Nitromed</td>
<td>Guidant, Medtronic</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. George Sopko</td>
<td>Content Reviewer—AHA Committee on HF and Transplantation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Karl T. Weber</td>
<td>Content Reviewer—Individual Review</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. William S. Weintrub</td>
<td>Content Reviewer—AHA Quality of Care and Outcomes Committee</td>
<td>Pfizer</td>
<td>Pfizer</td>
<td>Pfizer</td>
<td></td>
</tr>
<tr>
<td>Dr. Deborah Allen</td>
<td>Organizational—American Academy of Family Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Denise Barnard</td>
<td>Organizational Reviewer—Heart Failure Society of America</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Dr. Jonathan Howlett</td>
<td>Organizational Reviewer—Heart Failure Society of America</td>
<td>AstraZeneca</td>
<td>None</td>
<td>AstraZeneca Bristol-Myers Squibb/Sanofi Merck Novartis Servier</td>
<td></td>
</tr>
<tr>
<td>Peer Reviewer Name*</td>
<td>Representation</td>
<td>Research Grant</td>
<td>Speakers’ Bureau/ Honoraria</td>
<td>Stock Ownership</td>
<td>Consultant/ Advisory Board</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Dr. Ijaz A. Kahn</td>
<td>Organizational Reviewer—American College of Chest Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. JoAnn Lindenfeld</td>
<td>Organizational Reviewer—Heart Failure Society of America</td>
<td>• Bristol-Myers Squibb/Sanofi • Medtronic • Myogen • Novocardia • Pfizer • Scios Pharmaceuticals</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Mandeep R. Mehra</td>
<td>Organizational Reviewer—International Society for Heart and Lung Transplantation</td>
<td>• AstraZeneca • Biosite Diagnostics • Guidant • Medtronic • Merck • Scios</td>
<td>• AstraZeneca • Biosite Diagnostics • Guidant • Medtronic • Merck • Novartis • Scios</td>
<td>• Hommed</td>
<td>• AstraZeneca • Biosite Diagnostics • Guidant • Medtronic • Merck • Novartis • Scios</td>
</tr>
<tr>
<td>Dr. Alan Miller</td>
<td>Organizational Reviewer—Heart Failure Society of America</td>
<td>• Amgen • AstraZeneca • GlaxoSmithKline • Myogen • NitroMed • Novartis • Pfizer</td>
<td>• AstraZeneca • Bristol-Myers Squibb/Sanofi • GlaxoSmithKline • Novartis</td>
<td>None</td>
<td>• GlaxoSmithKline • Pfizer</td>
</tr>
<tr>
<td>Dr. K. Vijayaraghavan</td>
<td>Organizational Reviewer—American College of Chest Physicians</td>
<td>• Amgen • AstraZeneca • Cardiodynamics • Kos • Merck-Schering-Plough • Myogen • Pfizer</td>
<td>• GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of peer reviewers with industry that were disclosed at the time of peer review of this guideline. It does not necessarily reflect relationships with industry at the time of publication.

*Names are listed in alphabetical order within each category of review.

APPENDIX 3. REMATCH TRIAL ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCF</td>
<td>American College of Cardiology</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin converting enzyme</td>
</tr>
<tr>
<td>ACEI</td>
<td>angiotensin converting enzyme inhibitor</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>ARB</td>
<td>angiotensin II receptor blocker</td>
</tr>
<tr>
<td>ATPase</td>
<td>adenosine triphosphatase</td>
</tr>
<tr>
<td>BNP</td>
<td>B-type natriuretic peptide</td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airway pressure</td>
</tr>
<tr>
<td>CRT</td>
<td>cardiac resynchronization therapy</td>
</tr>
<tr>
<td>DCM</td>
<td>dilated cardiomyopathy</td>
</tr>
<tr>
<td>DIG</td>
<td>Digitals Investigation Group</td>
</tr>
<tr>
<td>EF</td>
<td>ejection fraction</td>
</tr>
<tr>
<td>EPO</td>
<td>erythropoietin</td>
</tr>
<tr>
<td>FHx CM</td>
<td>family history of cardiomyopathy</td>
</tr>
<tr>
<td>HCM</td>
<td>hypertrophic cardiomyopathy</td>
</tr>
<tr>
<td>HCV</td>
<td>hepatitis C viral infection</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HF</td>
<td>heart failure</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>ICD</td>
<td>implantable cardioverter-defibrillator</td>
</tr>
<tr>
<td>LBBB</td>
<td>left bundle-branch block</td>
</tr>
<tr>
<td>LV</td>
<td>left ventricular</td>
</tr>
<tr>
<td>LVEF</td>
<td>left ventricular ejection fraction</td>
</tr>
<tr>
<td>LVH</td>
<td>left ventricular hypertrophy</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>Na+K+</td>
<td>sodium-potassium</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association</td>
</tr>
<tr>
<td>RBBB</td>
<td>right bundle-branch block</td>
</tr>
<tr>
<td>REMATCH</td>
<td>Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure</td>
</tr>
<tr>
<td>RVEF</td>
<td>right ventricular ejection fraction</td>
</tr>
<tr>
<td>STICH</td>
<td>Surgical Treatment for Ischemic Heart Failure</td>
</tr>
<tr>
<td>VT</td>
<td>ventricular tachycardia</td>
</tr>
</tbody>
</table>

Downloaded from content.onlinejacc.org by on March 27, 2009
APPENDIX 4. AUTHOR RELATIONSHIPS WITH INDUSTRY AND OTHER ENTITIES—2009 FOCUSED UPDATE: ACCF/AHA GUIDELINES FOR THE DIAGNOSIS AND MANAGEMENT OF HEART FAILURE IN ADULTS

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Consultant</th>
<th>Ownership/Partnership/Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Mariell Jessup (Chair)</td>
<td>Acorn</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>CardioMEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GlaxoSmithKline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medtronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ventracor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. William T. Abraham</td>
<td>Arrow International</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>AstraZeneca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BioEnergy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boehringer Ingelheim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CardioKine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CardioKinetix</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CardioMEMS*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHF Solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Department of Veterans Affairs Cooperative Studies Program</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edwards Lifesciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inovise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medtronic*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>National Institutes of Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paracor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pfizer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ResMed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Respironics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Scis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Jude Medical*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sunshine Heart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Donald E. Casey</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Arthur M. Feldman</td>
<td>Alinea Pharmaceutical Arca Discovery</td>
<td>None</td>
<td>Cardiokine*</td>
<td>None</td>
<td>Cardiokine*</td>
</tr>
<tr>
<td>Dr. Gary S. Francis</td>
<td>Biosite</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Boehringer Ingelheim</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GlaxoSmithKline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medtronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NitroMed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otsuka</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Theodore G. Ganiats</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Marvin A. Konstam</td>
<td>AstraZeneca</td>
<td>Otsuka*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cardiokine</td>
<td>Orgis*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GlaxoSmithKline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merck*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NitroMed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Novartis*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otsuka*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanofi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Committee Member</th>
<th>Consultant</th>
<th>Speaker</th>
<th>Ownership/Partnership/Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Donna M. Mancini</td>
<td>Acorn</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Celladon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Peter S. Rahko</td>
<td>Breast Cancer</td>
<td>Boehringer</td>
<td>None</td>
<td>Enoxsive Pharmaceuticals</td>
<td>None</td>
<td>Deposition, Plaintiff, Myocardial Infarction Post Motor Vehicle Accident</td>
</tr>
<tr>
<td>International Research Group</td>
<td>Ingelheim</td>
<td>GlaxoSmithKline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Novartis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Marc A. Silver</td>
<td>None</td>
<td>GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Johnson & Johnson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Lynne Warner</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>CardioMEMS</td>
<td>None</td>
<td>CardioMEMS</td>
</tr>
<tr>
<td>Stevenson</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Medtronic</td>
</tr>
<tr>
<td>Dr. Clyde W. Yancy</td>
<td>GlaxoSmithKline*</td>
<td>GlaxoSmithKline*</td>
<td>None</td>
<td>GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nitromed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scios</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arca Discovery*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This table represents the relevant relationships of committee members with industry and other entities that were reported orally at the initial writing committee meeting and updated in conjunction with all meetings and conference calls of the writing committee during the document development process. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of 5% or more of the voting stock or share of the business entity, or ownership of $10,000 or more of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person’s gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships in this table are modest unless otherwise noted.

*Significant (greater than $10,000) relationship.

APPENDIX 5. REVIEWER RELATIONSHIPS WITH INDUSTRY AND OTHER ENTITIES—2009 FOCUSED UPDATE:

ACCF/AHA GUIDELINES FOR THE DIAGNOSIS AND MANAGEMENT OF HEART FAILURE IN ADULTS

<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Consultant</th>
<th>Speaker</th>
<th>Ownership/Partnership/Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Steven M. Ettinger</td>
<td>Official—American College of Cardiology/American Heart Association Task Force on Practice Guidelines</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Gregg G. Fonarow</td>
<td>Official—American Heart Association</td>
<td>AstraZeneca</td>
<td>None</td>
<td>AstraZeneca</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bristol-Myers</td>
<td></td>
<td>Bristol-Myers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Squibb/Sanofi*</td>
<td></td>
<td>Squibb/Sanofi*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GlaxoSmithKline*</td>
<td></td>
<td>GlaxoSmithKline*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medtronic*</td>
<td></td>
<td>Medtronic*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Merck*</td>
<td></td>
<td>Merck*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Novartis*</td>
<td></td>
<td>Novartis*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pfizer*</td>
<td></td>
<td>Pfizer*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. G. Harold</td>
<td>Official—American College of Cardiology Board of Trustees</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Robert E. Hobbs</td>
<td>Official—American College of Cardiology Board of Governors</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scios*</td>
<td></td>
<td>Scios*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Downloaded from content.onlinejacc.org by on March 27, 2009
<table>
<thead>
<tr>
<th>Peer Reviewer</th>
<th>Representation</th>
<th>Consultant</th>
<th>Speaker</th>
<th>Ownership/Partnership/Principal</th>
<th>Research</th>
<th>Institutional, Organizational or Other Financial Benefit</th>
<th>Expert Witness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael R. Zile</td>
<td>Official—American Heart Association</td>
<td>• Bristol-Myers Squibb/Sanofi • Exosome • Medtronic • Novartis • Orqis • Ortho Clinical Diagnostic • Synvista</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Doug Campos-Outcalt</td>
<td>Organizational—American Academy of Family Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Jun R. Chiong</td>
<td>Organizational—American College of Chest Physicians</td>
<td>• Roche Diagnostics</td>
<td>None</td>
<td>GlaxoSmithKline</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Steven Durning</td>
<td>Organizational—American College of Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Kurt Elward</td>
<td>Organizational—American Academy of Family Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Michael Felker</td>
<td>Organizational—Heart Failure Society of America</td>
<td>• Amgen • Boston Scientific • Corthera • Cytokinetics • Geron • XDS</td>
<td>None</td>
<td>Amgen</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. David D. Gutterman</td>
<td>Organizational—American College of Chest Physicians</td>
<td>None</td>
<td>None</td>
<td>Johnson & Johnson*</td>
<td>• National Institutes of Health*</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Charin L. Hanlon</td>
<td>Organizational—American College of Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Thomas F. Koinis</td>
<td>Organizational—American Academy of Family Physicians</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Alan B. Miller</td>
<td>Organizational—Heart Failure Society of America</td>
<td>None</td>
<td>• AstraZeneca • Bristol-Myers Squibb • CV Therapeutics • GlaxoSmithKline • Novartis</td>
<td>None</td>
<td>CV Therapeutics • Medtronic • Merck</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Srinivas Murali</td>
<td>Organizational—International Society of Heart and Lung Transplantation</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Nancy M. Albert</td>
<td>Content—American Heart Association Heart Failure and Transplant Committee</td>
<td>• Arca biopharma • GlaxoSmithKline • Medtronic</td>
<td>None</td>
<td>GlaxoSmithKline</td>
<td>None</td>
<td>GlaxoSmithKline• Medtronic*</td>
<td>None</td>
</tr>
<tr>
<td>Dr. John D. Bisognano</td>
<td>Content—American College of Cardiology Board of Governors</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peer Reviewer</td>
<td>Representation</td>
<td>Consultant</td>
<td>Speaker</td>
<td>Ownership/Partnership/Principal</td>
<td>Research</td>
<td>Institutional, Organizational or Other Financial Benefit</td>
<td>Expert Witness</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>Dr. Javed Butler</td>
<td>Content—American College of Cardiology Heart Failure and Transplant Committee</td>
<td>None</td>
<td>• Boehringer Ingelheim*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• GlaxoSmithKline*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Novartis*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. David E. Lanfear</td>
<td>Content—American College of Cardiology Heart Failure and Transplant Committee</td>
<td>None</td>
<td>• Thoratec</td>
<td>None</td>
<td></td>
<td>• Merck</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Sanofi-Aventis</td>
<td></td>
</tr>
<tr>
<td>Dr. Joann Lindenfeld</td>
<td>Content—American Heart Association Heart Failure and Transplant Committee</td>
<td>None</td>
<td>• Arca biopharma</td>
<td>None</td>
<td></td>
<td>• Merck</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• CV Therapeutics*</td>
<td></td>
<td></td>
<td>• Somalogic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Medtronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Sanofi-Aventis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Takeda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Wayne L. Miller</td>
<td>Content—American Heart Association Heart Failure and Transplant Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Judith E. Mitchell</td>
<td>Content—American Heart Association Heart Failure and Transplant Committee</td>
<td>None</td>
<td>• GlaxoSmithKline</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NitroMed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Rick A. Nishimura</td>
<td>Content—American College of Cardiology/American Heart Association Task Force on Practice Guidelines</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Donna F. Petruccelli</td>
<td>Content—American College of Cardiology Heart Failure and Transplant Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Win Kuang Shen</td>
<td>Content—American Heart Association Heart Failure and Transplant Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>• Medtronic*</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Lynn G. Tarkington</td>
<td>Content—American College of Cardiology/American Heart Association Task Force on Practice Guidelines</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dr. Emily J. Tsai</td>
<td>Content—American College of Cardiology Heart Failure and Transplant Committee</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relevant relationships with industry and other entities that were disclosed at the time of peer review. It does not necessarily reflect relationships with industry at the time of publication. A person is deemed to have a significant interest in a business if the interest represents ownership of 5% or more of the voting stock or share of the business entity, or ownership of $10,000 or more of the fair market value of the business entity; or if funds received by the person from the business entity exceed 5% of the person's gross income for the previous year. A relationship is considered to be modest if it is less than significant under the preceding definition. Relationships in this table are modest unless otherwise noted. Names are listed in alphabetical order within each category of review.

*Significant (greater than $10,000) relationship.
2009 Focused Update Incorporated Into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults

J. Am. Coll. Cardiol. published online Mar 26, 2009;

This information is current as of March 27, 2009

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high-resolution figures, can be found at: http://content.onlinejacc.org/cgi/content/full/j.jacc.2008.11.01 3v1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://content.onlinejacc.org/cgi/content/full/j.jacc.2008.11.01 3/DC1</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 798 articles, 449 of which you can access for free at: http://content.onlinejacc.org/cgi/content/full/j.jacc.2008.11.01 3v1#BIBL</td>
</tr>
<tr>
<td>Rights & Permissions</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://content.onlinejacc.org/misc/permissions.dtl</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://content.onlinejacc.org/misc/reprints.dtl</td>
</tr>
</tbody>
</table>